計測コラム emm227 号用

計測に関するよくある質問から

- 第 39 回 「DS-3000 シリーズ FFT 解析機能の演算式の利用」-

当計測コラムでは、当社お客様相談室によくお問い合わせいただくご質問をとりあげ、 回答内容をご紹介しています。

今回は、演算機能の使用方法を紹介します。

- ・測定環境の音圧レベル(暗騒音)を除去した、装置単体の音圧レベルを知りたい。
- ・加振機で加振しているが、加振機の周波数応答関数が平坦でないので、測定対象の本来の周波数特性を見ることができない。
 - □ 加振機の特性の除去であれば、周波数応答関数の割り算。 (イコライズ機能でも対応可能)

1. 暗騒音の除去は、音圧レベルの引き算

機械が動作している時の暗騒音を含んだ音圧レベルを $L_{\rm T}$ 、暗騒音レベルを $L_{\rm B}$ とすると、機 械から発生している騒音の音圧レベル $L_{\rm S}$ は、

$$L_{\rm S} = 10 \cdot \log \left(10^{L_{\rm T}/10} - 10^{L_{\rm B}/10} \right)$$

で計算できます。

10^{L_T/10}、10^{L_B/10} は それぞれ、音圧の実効値の2乗の値になってます。 https://www.onosokki.co.jp/HP-WK/c_support/newreport/noise/souon_10.htm#mark10_9 の補足 暗騒音補正 を参照してください。

パワースペクトルは、実効値の 2 乗の値になっているので、単なるパワースペクトルの引 き算で処理することができます。

グラフ1に、保存しておいた暗騒音レベルのパワースペクトル、グラフ2とグラフ3に現 在のパワースペクトルを表示して、グラフ3の演算式を PWR1-DISP1 で登録。 これで、グラフ3は暗騒音が除去された音圧レベルのグラフになります。

ΟΝΟ Ο ΚΚΙ

演算 1) 演算 	設定	2 後の単位変 単位	 []	減洗竣っ た竣 インとに	E PWRI-DISP1 リストに登録
関数	(VGHTA() FDIFF() FINTG() ABS()		WGHTC() FDIFF2() FINTG2()	jäjf jöjjj - ½ + image: state
	שלו 1	、 <u>——</u>	אלאב ו	数式 PWR1-[ISP1 育順余
•	2 3	読込 読込			
	4	読込			育時余

100 Hz~300 Hz 付近のパワースペクトルの形状がはっきりし、オーバーオール値も暗騒 音分が除去された数値になりました。

ΟΝΟ Ο ΚΚΙ

2. 周波数応答関数の演算

加振機の特性の除去は、周波数応答関数の割り算で処理できます。

加振機の特性と装置の特性が重なっています。 計測結果は、 G・H の特性になってしまいます。 予め、加振機だけの特性 (G) を計測しておけば、(加振機の加振台での特性)。 計測結果 = G・H なので、

H = 計測結果 / G

で 装置だけの周波数応答関数が求められます。

ΟΝΟ ΣΟΚΚΙ

グラフ1に保存しておいた加振機の周波数応答関数データを表示。 グラフ2、グラフ3に 現在の周波数応答関数を表示

グラフ3は、演算式で FRF1,2/DISP1 を登録。

清算設定	数式設定 — 数式 FRF コメント	1.2/DISP1	~ リストに登録
関数 WGHTA() WG FDIFF() FD FINTG() FIN ABS()	нтсо IFF20 ITG20	第子 ───── ガラフデータ ──── ・	DISP 1 📄 ACR CCR IMP COP OCT FRF CSP
コメント 1 読込 2 読込 3 読込 4 読込 5 読込	7支援		首/16余 首/16余 首/16余 首/16余 首/16余 首/16余 首/16余 首/16余 首/16余

グラフ3に補正された周波数応答関数が表示されました。 イコライズ (equalize) 機能 を使うことで、同じ処理が簡単にできます。

メニューの解析設定のイコライズ機能を開きます。 取り除きたい周波数応答関数を表示させ、アクティブにします。 FRF データ登録 の EXEC ボタンをクリック。 これで、取り除きたい周波数応答関数を登録しました。

イコライズ処理したい周波数応答関数をアクティブにします。

イコライズ処理を ON します。(ボタンが青色)

グラフは処理されデータが表示されます。

イコライズ処理の利点は、登録しておけば、その周波数応答関数を表示しなくても演算で きることです。四則演算と適時、使い分けてください。

(HK)