DS-3000 シリーズデータステーション

周波数応答関数簡易操作手順書

株式会社 小野測器

ONOSOKKI

目次

- 1. 計測までのフローチャート
- **2. 機器の接続**
- 3. DS-3000の設定
- 4. 計測する

1 計測までのフローチャート

インパルスハンマを使用した周波数応答関数の計測手順を説明します。

2 機器の接続

「加速度検出器」と「インパルスハンマ」を DS-3000 に接続します。加速度検出器にはアンプ内蔵 型と電荷出力型の2種類がありますが、ここではアンプ内蔵タイプの使用を前提として説明します。

それぞれのセンサは基本的に DS-3000 シリーズと以下の様に接続します。

下図はインパルスハンマはアンプを経由しないで、ダイレクト接続の例になりますが、アンプ側でゲイン(出力増幅)する場合は、インパルスハンマのアンプからの出力を DS-3000 に入力します。

ΟΝΟ Ο ΚΚΙ

3 DS-3000の設定

3-1 設定の準備

先ほど接続したインパルスハンマや加速度検出器を正しく動作させて、データを表示させる為に、検 出器の動作条件や感度をFFTアナライザに設定します。設定する感度や動作条件は使用する加速 度検出器に添付の「**出荷試験成績表」**に記載されています。

アンプ内蔵型加速度検出器「NP-3110」に添付されている出荷試験成績表

試験成績表の中でFFTに設定するのは①のデータです。

- ① 電圧感度は1m/s²の加速度で検出器が何V出力するか記載されています。ここでは 0.492mV の電圧が出る事が記載されています。
- ② 駆動電流は検出器に 2.4mA の電流を流して試験した事が記載されています。

インパルスハンマ「GK-3100」に添付されている書類の中で、必要なデータは以下の様に 記述されています。

インパルスハンマーの後部に取り付けるエクステンダーの有無で、 1N(ニュートン)当たりの電圧出力が違う事が記述されています。

加振力を一定にする為に、腕や手の力では無く、ハンマ自体の重量を利用して打撃する事が必要で す。よって後部にエクステンダを装着しての使用を推奨します。

ここでは1N(ニュートン)あたりの電圧出力の値、2.38mV/Nを確認しておきます。

ハンマ先端のチップについて

インパルスハンマによる加振力の周波数はハンマ先端のチップの材質を変えることによりおおよその調整が出来ます。

□HARD TIP(金属製)

インパルスの立ち上がりが急峻で高い周波数まで加振出来ます。ただし、ダブルハンマリング(二度叩き)の可能性があり、パワースペクトル密度は小さい。

□SOFT TIP(ビニール製)

パワースペクトル密度は大きく、加振エネルギーは低域に集中します。しかし、数Hz以下の加振を する事は困難です。

□MEDIUM TIP(プラスチック製) 金属製チップとビニール製のチップの中間の特性を持ちます。

ΟΝΟ Ο ΚΚΙ

3-2 入力源の設定

DS-3000に接続されている検出器の感度と動作条件等を設定します。ここでは

1CH:インパルスハンマ

2CH:加速度検出器

の条件で説明します。

メニューバーの入力をクリックして開いたダイアログボックスから電圧レンジの設定を選択します。

- ① 両チャンネルとも【オートレンジ】のチェックがされていたらチェックを消します。
- ② 【カップリング】は両チャンネルともAC(交流結合)を選んでおきます。
- ③【入力源】のダイアログボックスを開きます。
 1CH :インパルスハンマ用電源 BOX から信号を入力するときは、CCLD は OFF、インパルス ハンマから直接入力するときは、CCLD を ON にします。
 2CH :プリアンプ内蔵型の加速度センサを直接、信号を入力するときは、CCLD は ON、電荷 出力型の加速度センサをコネクタ接続タイプのチャージコンバータ経由で入力するときは、 CCLD は ON、チャージアンプ経由で入力するときは、CCLD を OFF にします。
- ④【OK】を押して確定します。

入出力設定() 解析設定() システム設定(S)	<u>A</u>) データ表								
クロス組合せ設定(<u>C</u>)									
周波数レンジ設定(E)	Ctrl+F								
入力設定印	Ctrl+I								
		•							
入力条件設定									
オートレンジ	電圧レンジ	カップリング	CCLD	オートゼロ	アナログフィルター				
🔲 СН1 🔲	1 Vrm s 🚩	AC 💌	~	~	Z(FLAT) 🔽				
🔲 СН2 🔲	1 Vrm s 🚩	AC 🔽	~	~	Z(FLAT) 🔽				
🔲 СНЗ 📃	1 Vrm s 🚩	AC 🔽		~	Z(FLAT) 🔽				
🔲 СН4 🔲	1 Vrm s 🚩	AC 🔽		~	Z(FLAT) 🔽				
\uparrow									
、【オートレンジ】のチェックがされていたら <u>チェックを消します</u> 。									
Vrms 🔽 🗖 オーバー	Vrms Vrms l オーバー時のみオートレンジ 全チャンネル設定								
				OK	キャンセル				

3-3 単位に換算する。

振動の波形がまだ電圧で表示されていて不便です。 単位の校正機能を使って電圧から加速度に直 読できる様にます。

メニューバー入力をクリックして単位校正を選んでダイアログボックスを開きます。

Onosokki DS-3000(DS-0320) - (ウィンドウ 1] (昭和の) みまわけまの #26510	(字(4) データ表示的字(0)	まっK000 まテ00 ウムボ	1040	A #700			
				W WINDE			8.8 ./mm	IPUUU
REALETING 20kHz Nガーモード OneShot M	 サンプル条件 内部 サンプルを執 2049 	 ✓ 平均モード設定 ✓ 平均処理条件 	A77-SP.加賀平均 👻 干均地 回数 💌 平均地	10 生時間 10				
コンフィグレーション	* X T	Current	Current-3D Schedule	Schedule-30 C	H 1 💌 #36589	ia Ri	Real 🖂	
 ▶ 77イル ▶ 計画コントロール ▶ 編集 ◇ 入却力量指定 ◇ 入却力量定 ◇ 入助力量に ◇ 入助力量 	Öçen Öçen 26.kt Öçen Wins	0H1 HATBOART	Ped					
) CH2) CH3) CH4) UT2-A-Self-Ref) UT2-A-Self-Ref) UT2-A-Self-Ref) UT2-A-Self-Ref) UT2-Self-Ref) UT2-	Uws 000 + 0 Uws 000 + 0 Uws 000 + 0 Open → Open →	EU MIG: CHI Ø CHZ Ø X28 CHS My/s CH4 = n My/s CH4 = n So CH5 = So CH5 = SO		EU 347 Gdt V/EU ♥ V/EU ♥ V/EU ♥	● 筆道 1 ¥ … 1 ¥ … 1 ¥ … 1 ¥ … 1 ¥ …	4454	TEDS MARTIN EXEC EXEC EXEC EXEC EXEC EXEC	
* ## 9 0 C PO ▶ 179 W ▶ 457		-70 -80 2000 X Overall Yi -839	4000 e000 97369¥	8000 100 Hg Gi	00 12000 aved	(全チャンネル設定 OK キャンセル 16000 18000	

単位//	校正	EU/SP]								
	EU	単位名			EU 値	EU タイ:	ĵ	0dB基準値		オフセッ	ト	TEDS 情報取得
CH1	1	N	•		0.00238	 V/EU	-	1	•	 0dB	-	EXEC
CH2	V	m/s2	•		0.000492	 V/EU	•	1	•	 0dB	•	EXEC
СНЗ		V	•] 1	 V/EU	•	1	•	 0dB	•	EXEC
CH4		V (•] 1	 V/EU	•	1	•	 0dB	•	EXEC
												全ナヤンネル設定

1CHにおいて、単位名をN(カの単位)、EU値にはEUタイプをV/EUにして0.00238を入力します。 2CHにおいて、単位名をm/s²(加速度の単位)、EU値にはEUタイプをV/EUにして0.000492と入力します。

これで1CH(インパルスハンマ側)が加振力のN(ニュートン)、2CH(加速度検出器側)が加速度の単位であるm/s²に変換され、各単位で直読出来る様になりました。

3-4 表示の切替

画面での設定

データ計測時は1CHの時間波形、下を2CHの時間波形の表示にします。

画面設定

画面設定ドロップダウンリストで、表示するチャンネル・関数を選択します。

画面を変更するには、データ画面左上のデータ種類ラベルをクリックして、画面をアクティブフレームに してから、上記設定を行います。

1CH、2CHの時間波形を表示させます。

3-5 電圧レンジの調節

電圧レンジと周波数レンジを測定に適した値に設定します。

インパルスハンマをハンマの自重で落とす感じ(一定の力)で被検物を叩きながら各チャンネルの LEVELインジケータのLEDが点灯しない様に信号波形をなるべく大きく表示するレンジに設定しま す。

入力レンジ設定: ハンマリングしながらオーバーにならないレンジを設定								
入力条件設計	定							
	オートレンジ	電圧レンジ	カップリング	CCLD	オートゼロ	アナログフィルター		
🔲 CH1		10 m Vrm s 🗸 🗸	AC 🔽	~	<	Z(FLAT) 🔽		
🔲 СН2		10 m Vrms	AC 🔽	V	<	Z(FLAT) 🔽		
🔲 СНЗ		100 m Vrms	AC 🔽		V	Z(FLAT) 🔽		
🔲 CH4		0.316 Vrm s 1 Vrm s	AC 🔽		V	Z(FLAT) 🔽		
		3.16Vrms 10Vrms	J					
L Vrms V コーバー時のみオートレンジ 全チャンネル設定								
					ОК	キャンセル		

LEVEL インジケータ LED:オーバーで赤色点灯

3-6 トリガーをかける

波形の観測がしやすい様にトリガー機能を使って波形を画面内の適当な位置に波形を停止しましょう。

コンフィグレーションウィンドウで、[入出力設定]→[トリガー条件設定」→[内部トリガー]を選択し、 「Open」ボタンで開きます。

ハンマリングしながら1CH(インパルスハンマ)の波形にトリガーをかけます。

トリガーポジションは波形の観測に支障が無い様に極力画面内の「左側」に設定しましょう。

♥ IJガー条件設定 りガーソース Nガーボジション Nガーボジション 内部 Nガーボジション 内部トリガーを選択。 ハンマ入力信号で トリガーをかける。	
内部トリガー条件設定 CH1:時間軸波形 Real 「 50 50 50 50 50 50 50 50 50 50	画面の中でマウスクリックして、 トリガーをかけたいレベルと位置 を設定。出来るだけ画面の左端に 近い位置を設定する。 Y 軸スケールはデフォルトスケールに
検出レベル 5 % トリガーボジション -32 OK キャンセル	しておいて下さい。 スケールを変更すると、スケールと レベル(%)軸が合わなくなります。

OKで設定完了

🗃 Onosokki DS-3000(DS-0320) - [ウィンドウ 1] 📑 ファイル(E) 計測コントロール(Q) 編集(E) 入出力設定(Q) 解析設定(A) _ 8× III TRIG e SIG C B ≯ SLOPE X AVG START STOP Current Current-3D Schedule Schedule-3D CH 1 👽 時間軸波形 Custom 1 | Custom 2 | Custom 3 CH1: 時間軸波形 Real 0.1 016 CH2: 時間軸波形 Real 100 50 -50 -100 💌 ⊿ 🔚 0001 💌 🔺 🖉 👰 😡 Log 🔍 🗌 X軸拡大 Lin Peak

画面のTRIGボタンを押して、トリガーをかける体制にします。

上画面:インパルスハンマの波形 下画面:加速度検出器の波形

ハンマリングして、設定した任意の位置で波形が停止すればトリガーは OK です。

3-7 ウィンドウの設定

インパルスハンマの信号は単発的な衝撃信号ですから補正なしのレクタンギュラウインドウ (rectangular window)に切り替えます。

コンフィグレーションウィンドウで、[入出力設定]→[窓関数設定」を選択し、「Open」ボタンで窓関数 設定ウィンドウを開きます。各チャンネルの窓関数設定を行います。ここでは、各チャンネルともレクタ ンギュラに設定しています。

C	▶ トリガー条件設施 単位、校正設施 窓関数設定	定 Repe E Op	at en		
	窓園敬設定 CH設定 CH CH <p< th=""><th>指数 フォース 窓関数 レクタンギュラ レクタンギュラ レクタンギュラ レクタンギュラ しクタンギュラ</th><th> /パラメータ ▼ マ マ マ マ マ マ マ マ マ マ マ マ マ</th><th>各チャンネルと 設定する。</th><th>もレクタンギュラに</th></p<>	指数 フォース 窓関数 レクタンギュラ レクタンギュラ レクタンギュラ レクタンギュラ しクタンギュラ	 /パラメータ ▼ マ マ マ マ マ マ マ マ マ マ マ マ マ	各チャンネルと 設定する。	もレクタンギュラに

3-8 周波数レンジを決める

周波数レンジは以下の様な要因を元に決定していきます。

- センサー(ここでは加速度検出器)の解析周波数範囲内にする。
- 着目する周波数分解能。(周波数レンジが低いほど周波数分解能は細かくなります。)
- 共振周波数をいくつまでみるか?(周波数レンジが高いほど、幾つものモードを見ることが出来ます)
 - 🗃 Onosokki DS-3000(DS-0320) [ウィンドウ 1] 📑 ファイル(E) 計測コントロール(C) 編集(E) 入出力設定(D) 解析設定(A) データ Ш X AVG **Ser** START sc STOP **ą х** コンフィグレーション ⊕ = Open クロス組合せ設定 ~ 5k Hz v 40k Hz 20k Hz 10k Hz 5k Hz 4k Hz 25k Hz 25k Hz 20k Hz 1.6k Hz 800 Hz 500 Hz 400 Hz 320 Hz 250 Hz 200 Hz オーディオサンブルモード ON ^ 周波数レンジをマウス ▶ ズーム設定 ▶ 入力設定 ▶ サンブル条件設定 ▶ 回転入力設定 ▶ トリガー条件設定 単位、校正設定 窓関数設定 ▶ 時間軸前処理設定 ▶ 平均化処理設定 ▶ スケジュール設定 ▽ 信号出力設定 Open 信号出力モード設定 波形出力 ▶ 波形出力モード設定 ▶ スイーブ平均信号出力モード設定 ▶ タイムレコード信号出力 モード設定 ▶ 解析設定 ▶データ表示設定 ▶ モード ▶ 表示 ▶ ウィンドウ ▶ オブション ▶ ヘルプ

3-9 AD オーバーキャンセルを設定する

ハンマリングが強すぎたりして入力信号の電圧がオーバした時に自動的にデータから除外する機能 です。コンフィグレーションウィンドウで、[入出力設定]→[サンプル条件設定]を選びます。

初めは、AD オーバーキャンセル「OFF」でデータを確認してください。オーバしてしまうと、データを更 新しないので、調整しづらくなります。

トリガーがキチンと掛かることを確認してから、ADオーバーキャンセルを「ON」にして下さい。

A/D オーバーキャンセルを チェックします。

3-10 アベレージを設定する

測定誤差を小さくするため、データの平均を取ります。この場合、スペクトルの加算平均を使います。 (初期設定ではこれが選択されていますが変更されている場合は設定が必要です)

アベレージの回数の目安は通常4回か8回くらいです。

コンフィグレーションウィンドウで、[入出力設定]→[平均化処理設定]を選択して設定します。

コンフィグレーション		4 X	
		⊞ ■-	
▶ チャンネル間ディレイ		~	
▶ 回転入力設定			
▶ トリガー条件設定	Repeat		
単位、校正設定	Open		
窓関数設定	Open		- パワー SP. 加算半均を
▶ 時間軸前処理設定	Open		選切 キオ
▼ 平均化処理設定	パワーSP.加算平均	✓	選択します。
平均処理経過値	0/10		
平均処理条件	回数	N I	
平均処理回数	10		—8 値桯度を人力します。
平均処理時間	10sec		
指数平均重み	10		
平均 Undo			
開始時オーバーラップ0%			
信号出力連動スイープ			
スイープチャンネル	CH1		
▶ スケジュール設定	定時間スケジュール	=	
▶ 信号出力設定	Open		
▶ 解析設定			
▶ データ表示設定			
▶ モード			
▶ 表示			
▶ ウ心ドウ			
▶ オプション			
▶ ヘルプ		<u>~</u>	

4 計測する

4-1 アベレージを実行して測定開始

アベレージを実行して計測を開始します。

「START」スイッチ押し、信号が入力されると自動的にアベレージが開始します。ハンマリングを開始 しましょう。設定したアベレージの回数分、信号(ハンマリング)が入力されると自動的に停止(STO P)します。計測はインパルスハンマと加速度検出器の時間波形2画面をモニタしながら**ダブルハンマ** ー(二度叩き)が無いか波形でチェックしながら行います。

トリガ回数

-15-

4-2 観測周波数応答関数データの確認

ここでは上画面を周波数応答関数、下画面をコヒレンス関数でデータの確認を行います。

※コヒレンス関数は、入力と出力信号の相関度を表す関数です。

入力・出力間でノイズの混入、ガタなどの非線形要素があるとコヒレンスが悪くなります。 コヒレンスが高ければ周波数応答関数の信頼性が高いと言えます。 コヒレンスはY軸の範囲で 0~1の範囲でレベル表示します。(コヒレンス関数は平均化しないと計算できません。)

(注意)

- 1. 本手順書の著作権は、(株)小野測器が保有しています。
- 2. 許可無き複製は、禁じます。
- 3. 本手順書は、一般的な計測の手順を説明しており、お客様の具体的な操作で得られた データなどについて一切の責任は負いません。

以上