

DS-0223 リアルタイムオクターブソフト 等価騒音レベル、単発暴露騒音レベルのオンライン解析

株式会社 小野測器

DS-0223 リアルタイムオクターブソフト

等価騒音レベル、単発暴露騒音レベルのオンライン解析

DS-0223 リアルタイムオクターブソフトでは、等価騒音レベルは「P.AVG」で、単発騒音レベルは「L. SUM」で測定します。

ここでは騒音計の AC 出力を DS-2000 データステーションの ch1 に接続し、等価騒音レベル並びに単発 暴露騒音レベルをオンラインで解析する操作手順を説明します。また、補足として、DS-0250 スループ ットで収録したデータのオフラインでの解析方法と、トリガ機能を使っての解析方法を説明します。な お、トリガ機能はオンライン、オフラインどちらの解析でも使用できます。

[]はメニューの操作手順を示します。表示される設定画面で「OK」ボタンがありましたら、設定後 必ず「OK」ボタンを押して確定してください。以下では、OK ボタンを押す操作の説明は省略しています。

測定条件

時定数	FAST
アナログフィルタ	FLAT
オクターブフィルタ	1/3 OCT
計測時間	10s

オンライン解析操作手順

1. 計測条件の設定

- -1. DS-0223 リアルタイムオクターブソフトを起動します。
- -2. ファイルメニューから、[入力] [周波数レンジ設定]を選択し、表示される「入力源設定」画面の[オクターブ]タブ内のオクターブフィルタを"1/3 OCT"に、周波数レンジを "High"に設定します。周波数レンジは、解析後に、Middle または Low へ変更可能です。

入力導設定	
オクターブ 入力 時定数	
「オクタ-ブ"フィルター 「1/3 OCT ▼	
OK +7	itili

-3. 「入力源設定」画面の[入力]タブ内の Ch1 の各値を次のように設定します。

電圧レンジ	0dB
入力源	BNC
オフセット	0dB
タイプ	log

Х	力源	設定				×
ſ	779-	ን ኢታ	時定数			
	Ch1:	電圧レンジ [*] OdB	入力源 ・ BNC	オフセット ・	917° ▼ Log ▼	
(Ch2:	-10dB	- BNC	■ OdB	- Log -	
(Ch3:	-10dB	- BNC	▼ OdB	- Log -	
0	Ch4:	-10dB	- BNC	✓ OdB	▪ Log ▪	
					□ 全尹ネル同様	
					OK キャンセル	ŀ

入力信号が電圧レンジオーバーすると測定画面上のインジケータが赤色となります。イン ジケータが緑色に点滅になることを目安に適切な電圧レンジを設定します。電圧レンジは 測定画面からの設定変更も可能です。

入力信号レベルインジケータ
電圧レンジ
🖶 Onosokki DS-2700 (DS-0223)
ファイル(E) 編集(E) ▶ 入力(Φ) 解析(A) デタ表示(D) モード(M) オフライン(Q) 表示(M) ヘルプ(H)
OCT CH1 ENC CH2 BNC CH3 ENC CH4 I 1/3 125ms(Fast) 125ms(Fast) -10dB 125ms(Fast) -10dB 125ms(Fast) 125ms(Fast) -10dB -10dB 125ms(Fast) -10dB -10dB 125ms(Fast) -10dB -10dB
Block MEM 🙀 🎽 No.1/500 < 🕨 Auto MEM 🎽 No.1/2000 <
RTTA START PAUSE STOP TREND 0% Time 0:00:10 TRACK SLOPE Or/min
2画面 Lベルトレンド Lx
□ 1/3 dBCH1_INST ○ 100
0 31.5 63.0 125 250 500 1.0k 2.0k 4.0k 8.0k 16.0k Hz
u 31.5 63.0 1.25 2.50 500 1.0k 2.0k 4.0k 8.0k 1.60k Hz
Y-scale CH2 V Current V INST V FLAT V M M M
Cur Search 💌 🕐
Ready

-4. 「入力源設定」画面の[時定数]タブ内の Ch1 の各値を次のように設定します。騒音計の 設定で A 特性が設定されていると、騒音計の ACout には A 特性がかかった信号が出力さ れています。ここでは騒音計も FLAT 特性を設定し DS-0223 のアナログフィルタの設定も FLAT 特性で行うこととします。

Ch1 時定数	125ms (Fast)
Ch1 アナログフィルタ	FLAT

<u>х</u>	<mark>カ源設式</mark> オクターフ"	入力 時定	数				
	┌時定数 Ch1:	t 125ms(Fast)	•	רםלק- Ch1:	^{ነ"ጋ} ィルターー FLAT	•	
	Ch2:	125ms(Fast)	•	Ch2:	FLAT	•	
	Ch3:	125ms(Fast)	•	Ch3:	FLAT	•	
	Ch4:	125ms(Fast)	•	Ch4:	FLAT	•	
					Γ	全升补旧材	ŧ
						OK	ーー キャンセル

-5. ファイルメニューから、[データ表示] [表示レイアウト設定]を選択し、表示される 「表示レイアウト設定」画面で波形表示数を1画面に設定します。

表示レイアウト設定			
波形表示数	1画面 🕞		
横並び表示			
□ チャンネル順番表示			
		ОК	キャンセル

💐 Onosokki DS-2000 (DS-0228)
ファ(ル(E) 編集(E) 入力① 解析(A) デー(次表示①) モード(M) オフライン(D) 表示① ヘルフ*(H) OCT 〇 CH1 ■ BNC 〇 CH2 ■ BNC 〇 CH4 ■ 1/3 ■ 125ms(Fast) ■ -20dB ▼ 125ms(Fast) ■ -10dB ▼ 125ms(Fast) ■ 125ms(Fast)<
Block MEM 👹 🌌 No.1/500 4 🕨 Auto MEM 🌌 No.1/2000 4
START PAUSE STOP TRIG TREND 0% Time D00010 TRACK SLOPE Image: Start Image: St
1画面 LA*)ルトレンド Lx
B C 1/3 H 1/3 H 1/3 H 1/3 H 1/3 H 100 H 10 H 10 H
Y-scale 🛆 🛡 [CH1 🔍 Current 💌 [INST 🔍 FLAT 🔍 🕍 🚟 Cur Search 💌
Ready

- -6. 単位校正を行います。
 - . 騒音計の CAL ボタンを押し、基準信号を出力します。ここでは CAL 時の騒音計の表示が「74dB」とします。この値「74dB」が DS-0223 の AllPass の値と一致するように 校正を行います。
 - . ファイルメニューから、[入力] [単位校正]を選択し、表示される「単位/校正設定」画面で各値を次のように設定します。「校正可」にチェックを入れ、「校正」ボタンをクリックすると自動的に測定と校正が始まり、終了すると ALLPASS の値が 74dB に変わります。

Ch1	1
表示データ	INST
平均時間	10s
校正バンド	Allpass
表示上限	100dB
校正タイプ	dB/SP
単位	spl
値	74

- . 上記画面で「Save」ボタンをクリックして校正値を保存しておくことが可能です。 保存された校正値の読み込みは「Load」ボタンをクリックし、「OK」をクリックする ことで有効にすることができます。
- . 騒音計の CAL ボタンを押し、測定に戻します。
- -7. ファイルメニューから、[入力] [計測時間設定]を選択し、表示される「計測時間設 定」画面で計測時間を"10s"に設定します。

計測時間設定	×
0時	0分 10秒
	OK ++>1211

2. 測定の開始と終了

-1. 「START」ボタンをクリックし、測定を開始します。「TREAND」ボタンは押さないで測 定してください。

💐 Onosokki DS-2000 (DS-0223)
ファイル(E) 編集(E) 入力(D) 解析(A) データ表示(D) モード(M) オフライン(D) 表示(V) ヘルフ(H)
1/3 ▼ 125ms(Fast) ▼ 0dB ▼ 125ms(Fast) ▼ -10dB ▼ 125ms(Fast) ▼ -10dB ▼ 125ms(Fast)
Block MEM 🙀 🏄 No.1/500 < 🕨 Auto MEM 🎽 No.1/2000 <
1画面 レベルトレンド Lx
B 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0
Y-scale 🛆 🔽 CH1 💌 Current 💌 INST 💌 FLAT 💽 🔝 🔢 🚾 Cur Search 💌
Ready

-2. 計測時間 10s が経過すると、測定は自動停止します。経過時間は「Time」で確認できます。 なお、表示画面は INST (瞬時データ)になっています。以下操作手順 3 で等価騒音レベ ル等の表示を行います。

3. 等価騒音レベル・単発騒音レベルの表示

-1. ファイルメニューから、[データ表示] [表示データ設定]選択し、表示される「表示 データ設定」画面の[バンドデータ]タブ内の各値を次のように設定します。

表示モード	Overlay
表示タイプ	グラフ
Data1 データ	Current
Data1 チャンネル	1
種類	P.AVE
f-weight	FLAT
Data2 データ	Current
Data2 チャンネル	1
種類	P.SUM
f-weight	FLAT

表示产生設定	
パッントッデータ モニタ トレント・データ	
表示モート" Overlay -	表示917° 7°57 🔹
Data1 テ"-タ Current ▼	Data2 7°'-9 Current
チャンネル 1 ・	チャンネル 1 🔹
種類 P.AVG I f-weight FLAT I A-weight for Overall	種類 P.SUM - f-weight FLAT - A-weight for Overall
₽F"LZ <u>1 ⊨</u>	₽ĥ"Lス 1 <u></u>
 「 全設定	OK キャンセル

ここでは「表示モード: Overlay」にし Data1、Data2 の重ね描き表示としました。「種類: P.AVG」が等価騒音レベル、「種類: P.SUM」が単発暴露レベルの表示になります。

P.AVG: 等価騒音レベル		
P.SUM:単発騒音レベル		
🖧 Onosokki DS-2000 (DS-0223)		
ファイル(E) 編集(E) 入力(0) 解析(A) データ表示(D) モード(M) オフライン(0) 表示(V) ヘルプ(H)		
OCT © CH1 ENC © CH2 ENC © CH3 ENC © CH4		
Block MEM 🙀 🎽 No.1/500 4 🕨 Auto MEM 🎽 No.1/2000 4 🕨		
1画面 レベルトレンド レx		
80		
60		
31.5 63.0 1.25 250 500 1.0k 2.0k 4.0k 8.0k 16.0k XAllpass Y: 57.28dBspl 67.28dBspl Hz		
Y-scale 🛆 🔍 CH1 💌 Current 💌 P.AVG 💌 FLAT 🔍 🚂 🧱 🗠 Cur Search 💌		
Ready		

ΟΝΟ Ο ΚΚΙ

-2. ファイルメニューから、[データ表示] [グラフ条件設定]選択し、表示される「グラ フ条件設定」画面からグラフの色を変更することが出来ます。以下では、「データ 2:緑」 に変更しています。データ1:P.AVG(等価騒音レベル)、データ2:P.SUM(単発暴露デ ータ)になります。

がう7条件設定		
●指定 背景色 リーム枠(左上) リーム枠(右下) リーム	 グ[*]リット 注釈 アクラィブ[*]KIND カーソル 	
「〒 [*] -タ1 〒 [*] -タ2	עעייד ד``ועייק ד	•
線種指定 データ1 データ2	▼ グ [™] リット ▼ カ-ソル	•
☑ グリッドオン _ 1	マ バー塗りつぶし	
□ 全設定	ОК	キャンセル

Overall: 1/3 オクターブ分析された各バンド のデータを使って演算で求めた騒音レベル

4. 等価騒音レベル (P.AVE) に A 特性をかける

ファイルメニューから、[データ表示] [表示データ設定]選択し、表示される「表示データ設定」画面の[バンドデータ]タブ内の f-weight 部で適用する周波数特性を変更出来ます。 ここでは、次図のように、Data2 の設定を「種類: P.AVG」 「f-weight: A-Weighted」に変更 します。データ1は FLAT、データ2 は A 特性をかけたオーバレイ表示になります。

表示产生設定		×
バッンド、データ モニタ トレント、データ		
表示モト" Overlay -	表示917 7"57 •	
Data1 データ Current ー	Data2 テ~-タ Current ▼	
チャンネル 1 ・	チンネル 1 ・	
種類 P.AVG I	種類 P.AVG マ 「weight A-weight for Overall	
7 ^{K°} L7 1 <u>;</u>	7F"LZ 1	
□ 全設定	OK ===)tili

- 5. テキストデータ(拡張子:TXT)での保存
 - -1. ファイルメニューから、[編集] [コピー設定]選択し、表示される「コピー設定」画 面で、TXT ファイル形式をチェックし、「OK」ボタンを押します。

⊐比*+設定	
 C L[*]ットマップ[*]形式 ● IXT7ァイル形式 	
- TXTファール形式の詳結 - コンディション 「 保存する	細 データ で保存しない くX軸のみ くY軸のみ 。XY軸を保存
	OK ++>>t/

-2. ファイルメニューから、[編集] [コピー]選択し、EXCEL 等へ貼り付けます。なお、 Overlay 表示の場合は Data1 側のみのコピー貼り付けとなりますので、ご注意ください。

以下にマイクロソフト EXCEL に貼り付けた例を示します。手順 1-6 単位校正のところで、 「単位:spl」を入力すると、SPL の文字が入ります。単位は未入力とするか、EXCEl 側で 「編集」 「検索」 「置換」で spl をスペースなどに変換することで削除できます。

25	0.99spl	-43.71spl
31.5	11.23spl	-28.17spl
40	10.60spl	-24.00spl
50	15.88spl	-14.32spl
63	19.03spl	-7.17spl
80	21.29spl	-1.21spl
100	21.36spl	2.26spl
125	23.53spl	7.43spl
160	22.27spl	8.87spl
200	28.58spl	17.68spl
250	30.82spl	22.22spl
315	35.73spl	29.13spl
400	35.78spl	30.98spl
500	36.98spl	33.78spl
630	41.75spl	39.85spl
800	47.28spl	46.48spl
1.0k	46.45spl	46.45spl
1.25k	45.09spl	45.69spl
1.6k	43.41spl	44.41spl
2.0k	42.39spl	43.59spl
2.5k	40.74spl	42.04spl
3.15k	39.32spl	40.52spl
4.0k	36.53spl	37.53spl
5.0k	36.01spl	36.51spl
6.3k	30.76spl	30.66spl
8.0k	26.20spl	25.10spl
10.0k	21.35spl	18.85spl
12.5k	16.36spl	12.06spl
16.0k	11.63spl	5.03spl
20.0k	4.75spl	-4.55spl
Allpass	53.43spl	53.43spl
Overall	53.62spl	53.61spl

オフライン解析操作手順

オンライン解析の操作と同じですが、次の操作を行い、オフライン解析データを読 み込んでおきます。

ファイルメニューから、[ファイル] [オフライン解析で開く]で DS-0250 スループットディスク機能で収録した ORF ファイルや Wav ファイルを読み込んで開くと、下図のプレビューが表示されます。解析したいデータ範囲をドラッグし「解析範囲」ボタンで指定します。指定されたデータが緑色で表示されます。範囲変更する場合は再度操作を行います。初期設定では全範囲が指定されています。このデータは繰り返し解析することが出来ます。

🕵 20080207キーボー	ド音.ORF <.or1>[1	78 (0.00	〕156s / Line)] 記錄■	寺間-21.354668和	🖢 – FileView	
ファイル(<u>F</u>) 表示範囲(R)	X軸単位(U) 選択範囲	围(<u>S</u>) サーチ	う化心) 表示(1) ヘルプ(4	±)		
्र 🖂 🖉						
Record.3 🔄						
Rec.3 [CH1]	adr:496680	サーチ:	X: 9.700781秒	>> 97.135	762%	4 🕨
1.41V	1					
0V				 	····*******	
-1.41V			`			
0.0645			10- 5			01.9E4E91£ib
0.049			、王デージ	/		21.03433149
解析範囲:4.920	1781秒~ 9.84171	19秒			REV:	

 オフライン解析データの範囲指定後、オンライン解析時の操作と同じ操作を行います。なお、 「オフライン処理 オン/オフ」をオフにし、「スタート位置リセット」で指定範囲の最初の位置 ヘサーチ点を戻してから「START」してください。下図に手順番号を示します。

3 STAR	⊤ボタンで解析スタート	(1) オフライン処理オン / オフ」をオフにします。
(5	<u>) STOP ボタンで解析終了</u>	
	④ 経過表示	2 指定範囲の最初に戻します。
🚜 Onosoki DS-2000	J <mark>OS-0223)[C:¥Documents and Settings¥野田幸治¥デスクトゥブ¥D</mark> の 報告(A) キシカキテ(A) エレジル サラム(A) キテクA A(コックロ))67-9Л¥+ 🔲 🛛
	ORF OCH2 ORF OCH3 ORF	CH4 V ORF
1/3 - 125ms(Fast)) OdB 125ms(Fast) -10dB 125ms(Fast) -10dB 125ms(Fast) -10dB 0 125ms(Fast) -10dB	a v 112≨ms(Fa≱t) v −10dB
		Or/min
	UFLDF" LX	
년 1/3 O dBspl	-CH1,P.AVG A -CH1,P.AVG	
100		
60		
40		11
20		h. II
0	15 630 195 950 500 100 900 400	
ХАЇ	lipass Y: 53.43dBspl 53.43dBspl Hz	
Y-scale	11 💌 Current 💌 P.AVG 💌 A-Weighted 💌 🔝 🔛	Cur Search V V
Ready	[Rec] 3	2008/0

トリガ機能を使った測定操作手順

トリガ機能はオンライン解析、オフライン解析どちらにも使用できます。トリガ機能には6モード ありますが、ここでは計測モードAの例を示します。詳細は HELP を参照ください。

【計測モードA】

オーバーオールレベルが設定したトリガレベルを超えた時点から、設定した時間の間パワー演 算またはレベルトレンド計測を1回実行します。

- 1. オンライン解析の操作を一通り行い、測定動作やデータの概要を確認します。
- トリガレベルを設定します。トリガ設定画面はオンライン解析の場合の画面と、オフライン解 析の場合の2種類あります。オフライン解析の操作を実行するとオフライン解析用トリガ画面 が自動的に開かれます。
- ファイルメニューから、[入力] [トリガ条件設定]を選択し、「トリガ画面」を開き各値を次の ように設定します。なお、モニター画面に入力波形のレベルが表示されますので、参考にしながら 「トリガレベル」を設定します。設定されたトリガレベルはモニター画面に白線で表示されます。

測定モード	時間
トリガモード	シングル

【オンライン解析時のトリガ設定画面】

【オフライン解析時のトリガ設定画面】

オフライン解析では、「オフライン処理 オン/オフ」ボタンをオフにしておき、「スタート位置 リセット」ボタンを押すとデータが再生され、モニターに表示されます。その他の設定はオン ラインと同一です。

- 4. 「TRIG」ボタンをオンにします。「TRIG」ボタンを押すことでトリガ機能が有効になります。
- 5. 測定を開始します。
 - . 「データ処理オン/オフ」をオフにします。(オンライン解析の場合はパスします)
 - . 「スタート位置リセット」をクリックし指定範囲の最初の位置に戻します。(オンライン 解析の場合はパスします)
 - .「TRIG」をオンします。
 - . 「START」をクリックすると測定待機状態になります。トリガがかかると測定開始します。 オンライン解析操作手順 1-7 で設定された計測時間に達すると自動停止します。
 - . 途中で停止する場合は「STOP」をクリックします。
 - . P.AVG、P.SUM の表示操作はオンライン解析と同一となります。
 - . 再測定を行うには から繰り返します。

ΟΝΟ Ο ΚΚΙ

以上