

ESUFEEL DS-0323 リアルタイムオクターブソフト JIS B 7761-3 (ISO 5349-1) に対応した手腕系振動測定手順

株式会社 小野測器

ΟΝΟ ΙΟΚΚΙ

ESUFEEL DS-0323 リアルタイムオクターブソフト JIS B 7761-3 (ISO 5349-1) に対応した手腕系振動測定手順

本手順は、小野測器 DS-3000 リアルタイムオクターブソフト DS-0323 を使って、JIS B 7761-3 (ISO 5349-1) に対応した手腕系振動の測定に関する手順を説明します。

■ 適応規格

JIS B 7761-3 (ISO5349-1)

■ 機器構成

- 1. NP-3560B 3 軸加速度ピックアップ
- 2. DS-3204 4ch 40kHz メインユニット
- 3. DS-0323 1/1・1/3 リアルタイムオクターブ解析機能
- 4. ノート PC

■ 測定手順

1. USER 定義の周波数ウェイティングをダウンロードします。

DS-3000のFAQ『DS-0323 リアルタイムオクターブソフトで「ISO 2631-1 (全身振動の測定規格)」、 「ISO 5349-1 (手腕系振動の測定規格)」で規定された周波数補正をかけるには』を参照し、手腕 系振動の補正特性用ユーザフィルタの定義ファイル「hand_ISO5349.csv」をダウンロードします。

https://www.onosokki.co.jp/HP-WK/c_support/faq/ds3000/hand_ISO5349.csv

(上:入力信号ピンクノイズ、下:当フィルタをかけたスペクトル 3.15Hz~2kHz)

図1 手腕系振動の補正フィルタ

2. ファイルメニューから、〔入出力設定〕→〔入力設定〕を選択し、NP-3560B 3軸加速度ピック アップの出力を DS-3204 4ch データステーションに下記のように入力します。

X 軸	\rightarrow	Ch1
Y 軸	\rightarrow	Ch2
Z軸	\rightarrow	Ch3

また、Ch1、Ch2、Ch3のCCLDをオンします。

۲	力条	件設定	3							— X
			オートレンジ	電圧レンジ		カップリン!	ŗ	CCLD	オートゼロ	アナログフィルター
		CH1		0.316Vrms	•	AC	-	V		Z(FLAT) 🔻
		CH2		0.316Vrms	•	AC	•	V		Z(FLAT) 🔻
		СНЗ		0.316Vrms	•	AC	-	V		Z(FLAT) 🔻
	CH4 🗌 1Vrms 🔻 AC 💌 🗌 🗌 Z(FLAT)					Z(FLAT) 🔻				
	Vrn	ns	▼ オーバーB	寺のみオートレン	ッツ	V	围	脉棘	幾能	全チャンネル設定
									ОК	キャンセル

(CCLDをONにアンプ内蔵型加速度検出器に電源を供給します。)

 ファイルメニューから、〔入出力設定〕→〔単位、校正設定〕で「校正可」にチェックを入れ、 「EU変更」をクリックし、各 ch の感度校正を行います(V/EU入力)。 単位は m/s²とし、データシートに載っている感度値(V/EU)を入力します。

NP-3560Bの場合、約1mV/m/s²です(データシートに記載された具体的な数値を入力してください)。

校	正設定				_	-		-					×
	単位/	校正	EU/SP										
		EU	単位名		EU 値		EU タイプ	9	0dB基準値		オフセッ	ŀ	TEDS 情報取得
	CH1	1	m/s2 🔻	·	0.001		V/EU	•	1	•	 OdB 🔻		EXEC
	CH2	1	m/s2 🔻	·	0.001		V/EU	•	1	•	 0dB	•	EXEC
	СНЗ		m/s2 🔻	•	0.001		V/EU	•	1	•	 0dB	•	EXEC
	CH4		V 🗸		1		V/EU	•	1	•	 0dB	•	EXEC
													(エファンホルBBA) () () () () () () () () () () () () () (

図3 校正設定

4. ファイルメニューから、〔解析設定〕→〔周波数重み付け〕→〔ユーザ定義フィルタ設定〕を オープンして、手腕系振動の補正特性用ユーザフィルタの定義ファイル「hand-ISO5349.CSV」 を読み込みます。

(ダウンロードした「hand-ISO5349.CSV」を読み込むとフィルタの形状が表示されます。)

図4 ユーザ定義フィルタ設定

4 画面表示で、上から順に、Ch1、Ch2、Ch3、CALCを設定していきます。

(上から CH1, CH2, CH3 の 1/3 オクターブ解析平均結果と演算結果)

図5 計測画面

4 画面表示で、上から3つの画面を、以下のように設定します。

画面 1	データ: Ch1、種類: P.Avg、周波数重み付け:ユーザ定義
画面 2	データ: Ch2、種類: P.Avg、周波数重み付け:ユーザ定義
画面 3	データ:Ch3、種類:P.Avg、周波数重み付け:ユーザ定義

数式演算を設定します。 一番下の画面(DISP4)をアクティブ後、ファイルメニューから〔解析設定〕→〔演算機能〕 で「数式設定サポートダイアログ」をオープンして、下記の演算式を入力します

DISP1+DISP2+DISP3

(注意)

RTA データはパワー値で格納されていますので、上式で 3Ch のパワー加算演算を行うことができます。

次に、演算機能をオンすることにより、図5のように、DISP4に演算結果が表示されます。

ΟΝΟ Ι ΟΚΚΙ

▽ 解析設定	
▶ 周波数重み付け	ユーザー定義
オクターブバンド合成機能	
▽ 演算機能	
▶ 四貝比寅算	
▽ 数式演算	
演算	
数式設定サポートダイアロ	5 Open
演算後の単位変換	
)酒具彼の単10	
式設定サポートダイアログ	
演算設定	教式設定
☑ 演算	##=T DISP1+DISP2+DISP3
■ 演算後の単位変換	BXIV
::::::::::::::::::::::::::::::::::::	
閱数	
WOUTOO W	
Walling	
	/ Inst Max Max H Min H
	(P.Ave P.Sum
数式履展	
	5a-4
▶ 1 1 1 1 1 1 1 1 1 1	015F1+015F2+015F8 自1時 =
2	前時
3	肖耶余
4 読込	肖 耶余
5 読込	肖 塚余 - 全前以除
	OK キャンセル

(計測データに対して数式演算の設定を行います。)

図6 数式設定サポートダイアログ

- 6. 解析を開始します。
 - オクターブ計測設定が「1/3Oct」となっていることを確認した後に、手腕系振動ですので、 表示帯域を「Middle」に設定します。 ファイルメニュー[入出力設定] - [オクターブ計測設定] で、周波数レンジを「Middle」 に設定します。
 - ② RTA のツールバーを下図(図7)のように設定します。この例では、10秒間の平均を 行います。

🖞 Onosokki DS-3000(DS-0320) -	[ウィンドウ 1]				And in case of the local division of the	
🛃 ファイル(F) 計測コントロー	ル(C) 編集(E)	入出力設定(I)	解析設定(A)	データ表	示設定(D) モー	ド(M) 表示(V)
	PAUSE STOP	REC		D SLOPE	CCG→ SIG OUT OS	COPE
オクターブバンド幅 1/3 Oct 🚽	CH1 👻 Z(FLAT	r) 🗸 128	5ms(FAST) 👻	CH3 🚽	Z(FLAT) 👻	125ms(FAST) 👻
パワー演算時間 10 📃 🛚	CH2 - Z(FLAT	r) 🗸 125	5ms(FAST) 👻	CH4 🚽	Z(FLAT) 👻	125ms(FAST) 👻

図7 オプションバー

オーバオール値

- ③ 供試品に加速度ピックアップを取り付けます。
- ④ 供試品を手で持って稼動します。計測中は同じ状態を維持します。把握力、測定環境など 測定に関する条件をメモして、後でデータに添付します。
- ⑤ 図7において、CALCボタンを押して(平均化オン)にして、STARTボタンを押し計測を 開始します。計測時間設定に達したら自動停止します。
- 7. 表示データを読みます。

DISP4(演算結果)のオーバオール値(グラフデータの一番右端)にカーソルを合わせ、手腕 系振動データを読み取ります。各 ch のパワー値の合計値となり、物理量単位は(m/s²)2とな っていますが、Lin 設定にすることにより m/s²直読となります。 画面下のツールバー(図 8)において、Y 軸を Lin にします。

この例では、3軸合成の手腕系振動値は3.747m/s²であることがわかります。

(備考)

手腕振動値は3.747m/s2

3Ch 加算の Overall 値が、X、Y、Z 軸の振動合成値 *a*_{hv} に相当します。

$$a_{hv} = \sqrt{a_{hwx}^2 + a_{hwy}^2 + a_{hwz}^2}$$

ここで、*a_{hwx}、a_{hwy}、a_{hwz}*はx、y、z軸の周波数補正加速度実効値です。

9. 周波数範囲を変更しオーバオールを再演算するには

手腕系系振動の必要周波数範囲は8Hz ~ 1.25 kHz を見ることがあります。合計を取るX軸周 波数範囲を変更し、オーバオールを再演算するには次のように操作します。

ファイルメニュー [データ表示設定] - [カーソル設定] - [デルタカーソル設定];

X 軸表示形式	OFF
Y軸表示形式	パーシャルオーバオール

上記の設定をした後に、カーソルモードを「Delta」に設定(図 8)にして 8 Hz バンドにカーソルを合わせて Δ ボタン(図 8)を押します。その後に、カーソルを 1.25 kHz バンドに合わせます。こうすることにより、サーチカーソルの Y 軸値が「POA」(パーシャルオーバオール)となり、必要周波数範囲は 8 Hz ~ 1.25 kHz での手腕系振動値を読み取ることができます。

手腕振動値は3.747m/s²

一以上一