

DS-0223 リアルタイムオクターブソフト

JIS B 7761-3 (ISO 5349-1) に対応した手腕振動測定手順

株式会社 小野測器

DS-0223 リアルタイムオクターブソフト

JIS B 7761-3 (ISO 5349-1) に対応した手腕振動測定手順

本手順は、小野測器 DS-2000 リアルタイムオクターブソフト DS-0223 を使って、JIS B 7761-3 (ISO 5349-1) に対応した手腕系振動の測定に関する手順を説明します。

■ 適応規格

JIS B 7761-3 (ISO5349-1)

■ 機器構成

- 1. NP-3560B 3 軸加速度ピックアップ
- 2. DS-2104 4 ch データステーション
- 3. DS-0223 リアルタイムオクターブソフト
- 4. ノート PC

■ 測定手順

 USER 定義の周波数ウェイティングをダウンロードします。
 DS-2000 の FAQ『DS-0223 リアルタイムオクターブソフトで「ISO 2631-1 (全身振動の測定規 格)」、「ISO 5349-1 (手腕振動の測定規格)」で規定された周波数補正をかけるには』を参照し、
 手腕振動の補正特性用ユーザフィルタの定義ファイル「hand-ISO5349.fit」をダウンロードします。

http://www.onosokki.co.jp/HP-WK/c_support/faq/ds2000/ds0223_1.htm

「hand-ISO5349.fit」フィルタ

(上:入力信号ピンクノイズ、下:当フィルタをかけたスペクトル 3.15Hz~2kHz)

2. ファイルメニューから、〔入力〕→〔電圧レンジ設定〕→〔入力源設定〕を選択し、NP-3560B 3 軸加速度ピックアップの出力を DS-21044 ch データステーションに下記のように入力します。

X 軸	\rightarrow	Ch1
Y 軸	\rightarrow	Ch2
Z軸	\rightarrow	Ch3

また、入力源の設定を2mAとします。

入力要	設定				×
オクタ-	ブ入力	時定数			
(電圧レンジ	入力源	オフセット	917°	
Ch1:	-10dB	SENSOR(2.01	OdB	→ Log →	
Ch2:	-10dB	SENSOR(2.01	OdB	✓ Log ✓	
Ch3:	-10dB	SENSOR(2.0	OdB	- Log -	
Ch4:	-10dB	- BNC -	OdB	- Log -	
				「 全升ネル同様	
					-
				UN +P/0	V

 ファイルメニューから、〔入力〕→〔単位校正〕→〔単位校正設定〕で「校正可」にチェック を入れ、「EU変更」をクリックし、各 ch の感度校正を行います(EU/V入力)。 単位は m/s²とし、データシートに載っている値(V/EU)の逆数を計算して入力します。 NP-3560Bの場合、約1000m/s²/Vです(データシートに記載された具体的な数値を入力してください)。

単位/校正設定			X
Ch 1 -	100	1	Save
表示デー5 INST -			load
平均時間 10 🗄 s			FFT_D
校正バンF Overall			校正
表示上限 100dB 🚽			₩ 校正可
校正917°dB/SP 👤	31.5	'Hz 16.0k	「自動
Cur	rent X: Overal	1 -30	0.5 dB
単位 m/s2	値 83.9	Set Defa	ult EU変更
		C	DK キャンセル

データシートに記載された各 Ch の感度を設定します。

EU変更		
EU/V Ch1: 1000 Ch2: 1000	単位名 m/s2 m/s2	
	OK	キャンセル

4. ファイルメニューから、〔入力〕→〔ユーザフィルタ設定〕→〔ユーザフィルタ〕で「読込」 をクリックし、ダウンロードした手腕振動の補正特性用ユーザフィルタの定義ファイル 「hand-ISO5349.fit」を読み込みます。

手腕振動の補正特性用ユーザフィルタの定義ファイル「hand-ISO5349.fit」を選択し、開くをクリックします。

ファイルを聞く		?
ファイルの場所 Φ: #]ihand-ISO5349.	(ご)新しいフォルダ	-13 * 9 + <u>-</u>
77/11-名(N)	user.fit	EB ((0)

5. ファイルメニューから、〔データ表示〕→〔表示レイアウト設定〕で波形表示数を「4 画面」に 設定します。

际时分计数定				Ð
波形表示数	4画面	•		
横並び表示				
□ 升)ネル順番表示				
			OK	キャンセル

4 画面表示で、上から順に、Ch1、Ch2、Ch3、CALを設定していきます。

4 画面表示で、画面上の各 Ch データをクリックしてアクティブ(青字に変わる)にし、ファイルメニューから、〔データ表示〕→〔表示データ設定〕のバンドデータを次の様に設定します。

画面 1	データ: Current、チャンネル:1、種類: P.AVE、f-weight: USER
画面 2	データ: Current、チャンネル:2、種類: P.AVE、f-weight: USER
画面 3	データ: Current、チャンネル:3、種類: P.AVE、f-weight: USER

表示扩展設定	X
ハ"ント"デ"-タ モニタ トレント"デ"-タ	
表示 E-F Single J	表示かび グラン・
Dala1 7"-9 Current •	Dala2 7"-9 Current
チャンネル 1 ・	ほうえん 1 🔪
種類 P.AVG ▼ f-weight □ A-weight for Overall	種類 INSI ▼ f=weight FLAT ▼ A=weight for Overall
7F°LZ 1 =	71°UZ 1
「 全設定	OK \$4500

次に、4 画面表示データの一番下の画面をクリックしてアクティブ後、ファイルメニューから、 〔データ表示〕→〔表示データ設定〕のバンドデータを次の様に設定します。

画面 4	データ: Calculated、f-weight: USER	

表示 E-F* Single	• 表示917 / 1777 •
Data1 7"-9 Calculated ▼	Dala2 7"-9 Current -
ファンネル 1 💽	カンネル 1 💽
種類 INSI . f-weight USER .▼	種類 INSI _ f-weight
■ A-weight for Overall	C A-weight for Overall

- ※ 文字フォントの大きさによっては、枠をはみ出したり、見づらくなったりするので、表示 ファイルメニューのフォントの設定で調整します。(1024×768 画面の場合、MS ゴシック 10 ポイント程度が目安です)
- 5. Calculated の内容を設定します。

一番下の画面をアクティブ後、ファイルメニューから〔解析〕→〔演算設定〕で DISP4 に下記 の演算式を入力します。関数、チャンネル、入力データ、演算子はダブルクリックすることに より記述されます。「PSUM」はパワー平均値の加算値(合計値)」を意味します。

PSUM (P. AVG1, P. AVG2, P.AVG3)

この時、「Equation」と「Display Equation」の2箇所をチェック下さい。

※「P.AVG1」は Ch1 のパワー平均の値を意味します。

6. 各 ch の入力条件を次のように設定します。

周波数	Middle
電圧レンジ	ch1~ch3:センサ2mA、レンジはオーバーしない位置に設定
時定数	FAST
解析(平均)時間	実際に測定する時間を入力
アナログフィルタ	FLAT

ファイルメニューから、〔入力〕→〔周波数レンジ〕→〔入力源設定〕で、オクターブフィル タを「1/3OCT」に、周波数レンジを「Middle」に設定します。

入力算設定			
779-7" 入力	時定数		
779-7"71169-		波数レンジー liddle ・	

次に、下図のように、電圧レンジ、時定数 FAST を設定します。

- 7. 解析を開始します。
 - ファイルメニューから、〔入力〕→〔計測時間設定〕で解析(平均)時間を実際に測定する時間に設定します。下図では10秒に設定しています。

計測吗	間設定				
0	時	0	纷	10	秒
			OK		キャンセル

- ② 供試品に加速度ピックアップを取り付けます。
- ③ 供試品を手で持って稼動します。計測中は同じ状態を維持します。把握力、測定環境など 測定に関する条件をメモして後でデータに添付します。
- ④ START ボタンを押し計測を開始します。計測時間設定に達したら自動停止します。
- 8. 表示データを読みます。
 - ファイルメニューから、〔データ表示〕→〔カーソル設定〕のカーソルデータ表示で、表示データの表示形式を「Lin」に設定し、左下の「全設定」をチェックして、OKボタンをクリックします。この時、Y軸スケールは dB m/s²のままですが、カーソルで読むデータは m/s²になります。

カーソル設定		
カ-ソル カ-ソルデータ表示 Y-Axis Number 表示形式	tin v	
小数点以下桁数	Lin 3 💽 Log 2 💽	
₩ 全設定	OK +	->セル

② PSUM (P.AVG1、P.AVG2、P.AVG3)のオーバーオールにカーソルを合わせ、手腕振動データ を読み取ります。PSUM の値は、各 ch のパワー値の合計値となり、物理量単位は $(m/s^2)^2$ と なっていますが、LIN 設定にすることにより m/s^2 直読となります。

- 9. リスト表示にします。
 - ① グラフ表示からリスト表示への変更

CH1(画面上段)をクリックしアクティブにします。ファイルメニューから、〔データ表示〕 →〔表示データ設定〕で表示タイプに「リスト」を設定し、左下の「全設定」のチェック をはずして、OK ボタンをクリックします。

パッンドデデータ モニタ トレントデデータ	
表示 E-h Single •	表示 917 リスト -
Dala1	Data2
7"-9 Current ▪	7"-9 Cu E=9
チャンネル 1 ・	フォンネル 1 ・
種類 P.AVΘ .▼	種類 INST ·
f-weight	f-weight
C A-weight for Overall	C A-weight for Overall
75°12	7K%L2 1 -

② 同様に CH2~Calc をアクティブにし、リスト表示します。

③ LIST 表示を横並びに変更します。

ファイルメニューから、〔データ表示〕→〔表示レイアウト設定〕で「横並び表示」をク リックし、その後表示される〔表示並び選択画面〕で「4×1」から「1×4」へ設定を変 更します。

表示	итона	諚							Þ
波	浙表示	一数	[4西面	<u>.</u>	I			
	横並	び表示	7						
Г	チャンネル	いゆ番ぎ	表示						
							OK	= +v>	セル
	表示	並び選	択						
	1x1	2x1	3×1	4×1					
	1x2	2x2	3	4x2	5x2	6x2		8x2	
	1x3	22		4x3				8x3	
	1x4	2×4	3×4	4×4	5×4	6×4	7×4	8x4	
		2×5		4x5					
		2x6		4x6					
				4x7					

2x8 3x8 4x8

<備考>

■ LIST 表示での値は、4 画面全て m/s² 直読となります。

■ PSUM の Overall 値が、X、Y、Z 軸の振動合成値 *a*_{hv} に相当します。

$$a_{hv} = \sqrt{a_{hvx}^2 + a_{hvy}^2 + a_{hvz}^2}$$

ここで、 a_{hwx} 、 a_{hwy} 、 a_{hwz} はx、y、z軸の周波数補正実行加速度です。

- 10. 周波数範囲を変更しオーバーオールを再演算するには 手腕系振動の必要周波数範囲は 8Hz~1.25kHz を見ることがあります。X 軸周波数を変更し、 オーバーオールを再演算するには次のように操作します。
 - ① 9項①の操作で、設定をグラフ表示に戻します。
 - ② ファイルメニューから、[データ表示]→[X 軸スケール設定]でX 軸の下限周波数を「8Hz」 に、上限周波数を「1.25kHz」を設定し、左下の「全設定」にチェックして OK ボタンをク リックします。

XY軸スケール設定	×
X韓由 Y韓由 FLンF [*] XY韓由 表示周波数帯域	- バンド合成
下限周波数 8.00Hz ▼ 上限周波数 1.25kHz ▼	с 1/1
表示時間範囲 30s 、	
「全設定」	 OK キャンセル

③ 9項の操作でリスト表示します。

- 11. CALC のデータ(m/s²)を EXCEL に貼り付けるには
 - ① ファイルメニューから、[編集] → [コピー設定] で、下図の用にチェックを入れ OK ボ タンをクリックします。

t*-酸定	Σ
∩ ビットマッフ°形式	
• IXIZZ (MHERE)	
-TXT7r4W形式の詳	田·
コンディション	7°-9
₩ 1#179 ©	C X軸のみ
	C Y軸のみ C W軸を使存
	· AI#BCIA(17
	0K 47771

- ② 「Calc リスト画面」をクリックし、アクティブにします。
- ③ ファイルメニューから、[編集] → [コピー] をクリックします。
- ④ EXCELを開き、貼り付けを実行します。

a M	icrosoft Exce	l – Book1		(
11	ファイル(上) 編集	(E) 表示(V) 挿入(P) 書式(Q)	ツール(T)	データ(D) ウイ:	/ドウ(W)
0	Chart(Q) AUT	(L) Adobe PDF(D)			- @ ×
10	📁 🖬 🖪 🕘	🖪 🗋 🥙 🛍 🕺 🙇 - 🗠	7 - E -	100% -	1 3n - 1
1	Ha Ha La 🗠	対応なる場合で	収開結果の原作	E(C)_	
-	A1	 A Label: 	694851665566435		
	A	В	C	D	E
1	Label:				1
2	DateTime:	Thu Sep 09 11:06:10 2010			
3	DataKind.	CH4	Octave	1月3日	
4	Calc:	0			
5	Data:	INST			
6	Filter	USER		-	
7	Filter(O.all):	FLAT			
8	X-AxisScale.	Log			
9	X-AxisUnit:	Hz			
10	Y-AxisScale:	Log			
11	Y-AxisUnit:	dB			
12	8	2.704e-002m/s2			
13	10	1 809e -002m/s2	-		
14	12.5	2.835e-002m/c2			
15	16	3.103e-002m/s2			
16	20	2.898e-002m/s2	-		
17	25	1.963e-002m/sz			
18	31.5	2 /U2e -UU2m/s2			
19	10	2.725e-002m/s2			
20	50	3.168e=002m/sz			
21	03	3.000e=002m/s2		-	
00	100	1.061 - 002 - /-0			
24	125	2 973o=002m/s2	-	-	
24	N N Shoot1	/Sheet? /Sheet3 /	0		×
1 0000	(Dillerin)				A
E LXHE	sound (B) + 14	A-MANDON / / CC			<u>.</u>
JV	ĸ		P	IUM	

- 12. データ保存
 - ファイルメニューより、[ファイル] → [ブロックメモリ] をクリックし、ブロックメモ リ画面を開きます。

Address	No data	1 Cil	Comme			-	Dale
2	No data						
3	No data						
4	No data						
5	No data						
ό	No data						
7	No data						
8	No data						
9	No data						
10	No data						
¢							>
	1		0 11	File	-	202	
Store	Recall	Clear				1 E 6	AutoSto

 ② 保存先「Address」をクリックし選択後 Store ボタンをクリックします。ここでは Addoress1 を指定し、保存した様子を示します。Calc データは保存されませんが、ch1 ~ ch3の PAVG のデータが保存されています。

Address	Туре	Ch	Comment	Date 2
1	P.AVG 1/3	1		2010/1
2	P.AVG 1/3	2		2010/1
3	P.AVG 1/3	3		2010/
4	INST 1/3	4		2010/1
5	No data			
6	No data			
7	No data			
8	No data			
9	No data			
10	No data			1
\$				2
			- File	
Store	Recal	Clea	110	AutoSto

- ③ OK ボタンをクリックしブロックメモリ画面を閉じます。
- ④ 保存データを再生し、再度「Calc 演算」することが可能です。Ch 1 ~ 3 の PAVG データが② の図の様に保存されている場合は、演算式のデータを MEM1、MEM2、MEM3 に変更します。 再生の場合は、フィルタは "FLAT" に戻してください。

通貨通知 Disp1 Disp2 Disp3 Dis F Equation FSUM(MEM1,M	ар4 IEM2,MEM3)	
I Display Equa I Display Equa DP() LOG() SQRT() WGHTA() WGHTC() PAVG() PSUM()	tion 満算子 () , + - * / -メモリデーター Block MEM 1 _	入力データ INST MAX AMEM MAX.H MIN.H P.SUM P.AVG デナンネル選択 1 Ch

🍓 Onosokki DS-2000(DS-0223)	
?r(ル(E) 編集(E) 入力① 解析(A) データ表示(D) モード(M) わうけい(D)) 表示(\) へい?(H)
OCT CHI SNC CH2 BNC	CH3 BNC CH4 BNC
1/3 • 125ms(Fast) • 10dB • 125ms(Fast) • 20dB •	125ms(Fast) 20dB 125ms(Fast) 20dB
RTA START PAUSE STOP TRIG TREND Block MEM	No.3/600 4 Auto MEM M No.1/2000 4
TRACK SLOPE 01/min 100% Time 0.00.05	
4画面 LA"ルトレント" Lx	
H/3 c0m/s2 -BLX001: U m /s2 H/3 c0m/s2 -BLX002: U 100 1182c=002, 1255 9126c=003, 1255 126c=002, 1255 1000 1262c=003, 1255 101 11030c=002, 200, 1140c=002, 200, 1140c=002, 200, 1140c=002, 1400, 1146c=002, 500, 1199c=002, 500, 1199c=002, 100, 1226c=002, 100, 1007c=000, 500, 9070c=000, 500, 9070c=000, 100, 9138c=001, 1256, 3184c=001, 1266c=001	Home Home Home Home Home Home 10-11 1204-002 125 2016-002 100 1204-002 125 2016-002 125 2016-002 100 1204-002 125 2016-002 125 2016-002 100 1206-002 126 2208-002 100 1209-002 100 1309-002 126 2208-002 100 1309-002 100 1309-002 126 2208-002 100 1309-002 630 1909-002 100 1900-002 630 1909-002 630 3109-002 100 1900-002 100 100 100 100 100 1900-002 100 100 100 100 100 1518 280-001 100 100 100 100 1518 280-001 100 100 100 100 152 2570-002 201 1758-0001 201
Beady	
1 WARY	
l	FLAT に戻します

一以上一