

DS-0221 汎用 FFT 解析ソフト

加振器でサインスイープにより周波数応答関数を測定する方法

簡易操作手順書

株式会社 小野測器

ΟΝΟ ΣΟΚΚΙ

DS-0221 汎用 FFT 解析ソフト

加振器でサインスイープにより周波数応答関数を測定する方法

固有振動周波数を測定する方法として、対象を加振機でサインスイープ加振を行い、周波数応答関数を 測定することがよくあります。また、バンドパスフィルタの周波数特性の測定でも、入力信号にサイン スイープ信号を使い、周波数応答関数を測定します。どちらの測定も操作手順は同じです。

ここでは、CR 回路のローパスフィルタ測定を例に、その操作手順を説明します。なお、下図の様に電気回路から信号を取り出す場合、信号が DS-2000 の入力回路に影響されないようバッファーアンプを通した信号を接続してください。また、オシロスコープ用プローブの影響を排除するためプローブを使わずに直接接続してください。サインスイープによる周波数応答関数測定では、DS-0221 の「パワーSP スイープ」平均機能を使います。このサインスイープ加振の際、DS-0271A 信号出力(オプション)を組み合わせて使用すると、サインスイープ信号が解析と同期して出力され、データの平均化も可能となるため、最適な測定を行うことが出来ます(別紙「DS-0271A 信号出力を使いサインスイープにより周波数応答関数を測定する方法」を参照下さい)。

以下説明では、ファイルメニュー操作を []で、[ファイル] → [新規プロジェクト]のように表記します。 DS-0221の基本的操作並びに操作手順での設定後の OK ボタン操作はここでは省略します。

加振機を使用する場合は、次図のように、加振コントローラより加振器へサインスイープ信号を入力します。

■ 操作手順

- 1. メニューから [ファイル] → [新規プロジェクト] を開きます。
- 2. 「START」ボタンを ON し、測定状態とします。
- 3. 信号に応じた電圧レンジ、周波数レンジを設定します。ここでは、電圧レンジ=1 Vrms、周波数レ ンジ=20 kHz に設定しています。
- 4. メニューから [入力] → [ウィンドウ(窓関数)設定]を選択し、"ウィンドウ(窓関数)設定" ダイアログボックスを開き、CH1 および CH2 とも窓関数を"ハニング"に設定します。

ウィントウ(窓関数)設定			
<u>S</u> et	<u>Exp</u> <u>Force</u> <u>U</u> ser		
CH1	ハニング 🔽 🖃		
CH2	ハニング ・		
CH3	ルニング ・		
CH4	ハニング ・		
CH5			
CH6	_		
CH7	_		
CH8	_		
□ 全チャンネル設定にて詳細設定も同じにする			
全チャンネル	設定 OK キャンセル		

- 5. 「STOP」ボタンを押し、測定を停止します。
- 6. メニューから [データ表示] → [表示レイアウト] → [表示画面数 6 画面] を選択し、6 画面表示 にし、下図の様に各画面に表示したいデータを設定します。

 メニューから [入力] → [平均化処理設定] を選択し、"平均化処理設定"ダイアログを開き、 「平均化モード:パワーSP スイープ」、「平均方法回数:1」、「スイープトレース CH:1」に設 定します(最後の補足説明を参考ください)。

平均化処理設定 🔀	
<u>S</u> et Sweep	
「平均化モードーーーーーー	
/パワーSP.スィープ ▼	-
• 回数 1	-
○時間 1.0 1秒	
□ 平均開始時(こオーバーラップを0%(こする	
λ-7° ⊧ν-λCH <mark>CH 1</mark>	-
OK ++>>th	1

- 8. 「START」ボタンを押し、測定を開始します。
- 信号発振器のサインスイープを開始します。この時、瞬時波形、スペクトル波形を観測します。適切な時間でスイープされていると、スペクトルはピーク波形になりますが、スイープが速いと、丸くなった形となります。

ονο ζοκκι

👢 Onosokki DS-2000(DS-0221) - [Onosokki DS-2000(DS-0221):1]	
🌉 ファイル(E) 編集(E) 計測(M) 入力(D) 解析(A) データ表示(D) モード(L) オフライン(D) タインドウ(M) 表示(M) ヘルプ(H) 🔤 🔺	
■ 42 ■ ▲ ▼ … CH 2 ■ ハ*ワースヘ*ウトル ゴ スイープが早すぎる場合のスペ	クトル
Scale ▲ ▼ Log ▼ ₩ All	
Current Array List Nyquist Orbit	
CH1:時間軸波形 CH1:ハ*ワーブクトル CH1-2:周波数応答関数	
-1.414 -80 -50 -50	
U 4Ums U Kect 2UkHz U 2UkHz X:33.164ms Y:0.277V X:2.725kHz Y:-14.20dBVr X:0.000Hz Y:-9.80dB	
CH2:時間軸波形 CH2:ハ*ワースヘ*クトル CH2:パ*ワースヘ*クトル	
Keal Phase deg dBVr dBVr	
-1.414 -80 -200 -200	
0 40ms 0 Rect 20kHz 0 20kHz X:39.570ms Y:67.596mV X:2.550kHz Y:-25.79dBVr X:13.925kHz Y:168.170deg	
Cursor Peak 🔍 💶 🕨 🗸 All 🗆 XExpand Lin 🔍 🗸 All	
Freq 20kHz Sample 内部 _ 2048	
へいつを表示するには[F1]を押してください。	

- 10. 「STOP」ボタンを押し、測定を停止します。
- 11. 「AVG」ボタンを押し、「パワーSP スイープ」機能で測定を開始します。
- 12. 信号発信器によるサインスイープを開始します。
- 13. サインスイープが終了したら、「STOP」ボタンを押し、測定を停止させます。
 - スイープが早く、測定できない周波数が発生すると、下図のように、縦線が入った状態になります。 これは値が極めて小さくなっているからです。周波数レンジが小さいほど測定時間(サンプル時間) が長くなりますので、スイープ時間を十分にとってください。

Openedki DS-2000(DS-0221) - [Openedki DS-2000(DS-0221):1]	
■ 72/4/(F) 編集(F) 計測(M) 入力(0) 解析(A) デーな表示(D) モード(1) 打つ行/(0) カイントウ(W) 表示(V) へんつ*(H)	
Image: Image	
Current Array List Nyquist Orbit	
CH1:時間軸波形 CH1:パワースペクトル CH1-2:周波数応答関数 1.414 0	
-1.414 0 40ms 0 Rect 20kHz -50 ORect-Rect 20kHz X:26.074ms Y:0.274V X:3.125kHz Y:-14.44dBVr X:125.000Hz Y:0.21dB	
CH2:時間軸波形 CH2:応*ワ-スヘ*クトル CH1-2:周波数応答関数 1.414 0 0 0 Real 0 0 0 -1.414 -200 -200	
0 40ms 0 Rect 20kHz 0Rect-Rect 20kH X:25.625ms Y:9.406mV X:275.000Hz Y:-16.03dBVr X:25.000Hz Y:0.734deg	2
Cursor Peak 💌 🖌 🕨 🗸 All 🔽 XExpand Lin 🔍 🖓 All Scale 🛆 🔻 Log 🔍 🖓 All	
Freq 20kHz 🔍 Average 10195/1 パワーSP.スイープ 👻 Sample 内部 👻 2048	
へいった表示するには [F1]を押してください。	/

何度かスイープさせてデータを上書きするように測定して縦線を解消後、「STOP」ボタンを押し、 測定停止することも可能です。

<繰り返しスイープし上書きした様子>

② 測定停止後、発振器の出力を停止します。

- 14. X軸をLogスケールに設定します。
 - ① 周波数応答関数画面をクリックしてアクティブにします。
 - ② メニューから [データ表示] → [X 軸設定] を選択し、"単位設定"ダイアログを開き、XUnit タブで「X 軸 IN/LOG: Log」にチェックを入れます。

単位設定			
XUnit YUnit Pha	se		
X軸拡大		- I	
□ 現在のデルタカーンル間にて:	×軸拡大		
スタート位置 0	Hz		
ストッフ [°] 位置 20000	Hz		
│ 「X輔LIN/LOG──── 「X輔単化	立 z		
C Lin C ord			
Or,	/min		
	04		
▶ 三回田	UN	TY/UN	

X軸がLogスケールで表示されます。

- 15. Y 軸スケールを任意設定します。
 - ① Y軸スケールを変更したい画面をクリックし、アクティブにします。
 - ② メニューから [データ表示] → [Y 軸設定] を選択し、"単位設定"ダイアログを開き、YUnit タブで、画面下の「全画面」のチェックをはずし、「Y 軸スケール:任意設定」をチェックして、 上下限値を設定します。Y 軸スケールを変更したい画面毎に① ~ ②の操作を繰り返します。

単位設定			
⊻Unit ⊻u	Jnit <u>P</u> hase		
データ属性 ┌Y軸スケール	Mag	_	
○ デフォルトスケー	▶ 上限 10	-	
• 任意設定	下限 -40		
rms/0-P/P-			
C 0-Peak	€ Log		
C P-P	MagdB		
V/V^2			
© ESD			
□ 全画面	OK	キャンセル	

16. カットオフ周波数をみるため、周波数応答関数-3dB(電圧値で 1/√2 倍に減衰した点)にカーソルをあてます。下図はその時の様子を示します。

17. 測定終了時には、メニューから [入力] → [平均化処理設定] を選択し、平均化処理設定ダイアロ グを開き、Sweep タブで「ON」のチェックをはずします。この時、Set タブで平均化モードを「パ ワーSP スイープ」から「パワーSP 加算平均」などに変更してください。「パワーSP スイープ:ON」 の場合、操作に制限が掛かるため、操作できないメニューが発生します。

平均化処理設定	×
Sweep	
「信号出力連動スイーブ平均 「 <u>「 []]</u>	
Start周波数 25 .Hz Stop周波数 20000 .Hz テーパー機能 F ON/OFF 立ち上がり 1 .s	
OK	:W

平均化処理部	定		
<u>S</u> et	Sweep		
┌平均化モ			
パ°ワ-SP	.71-7°	•	
一平均方法	<u></u>		
◎ 回数	1	. 0	
○時間	1.0	一秒	
□ 平均開始時(こオーバーラップを0%(こする			
スイーフ°トレ-	-ZCH <mark>CH 1</mark>	•	
		0K	キャンセル

■ 補足説明

1. パワーSP スイープ機能

この機能は、現在スイープされている周波数の監視を「スイープトレース CH」で設定されたチャンネルのスペクトルから、ピークの周波数をとって行っています。この周波数に該当する周波数応 答関数の値がサインスイープに応じ順次記憶され、記憶されたデータを表示する機能となっています。 一般的に「スイープトレース CH」は基準となる信号側を設定します。

平均化処理器	定		
<u>S</u> et 平均化モ	Sweep 	•	
 平均方法 ● 回数 ● 時間 	1		
□ 平均開始時にオーハ [*] -ラッフ [°] を0%にする スイーフ [°] トレースCH CH 1 ▼			
	J	OK	++>th

2. 周波数分解能を上げる(ズーム機能)

カットオフ周波数付近や共振周波数付近では周波数分解能を上げて測定をしたいことがあります。 周波数分解能を上げるには、次の2つの方法があります。

- メニューから [入力] → [サンプル条件設定] を選択し、サンプル条件設定ダイアログで 大きいサンプル数に変更
- ズーム機能を使ったスイープ測定

しかし、分解能を上げると、測定に時間がかかるため、操作手順 13 で説明したようにスイープ時間を 極めて長く取る必要があります。

- 以上 -