

DS-0221 汎用 FFT 解析ソフト

DS-0271A 信号出力を使いサインスイープにより周波数応答関数を測定する方法

簡易操作手順書

株式会社 小野測器

ΟΝΟ ΣΟΚΚΙ

DS-0221 汎用 FFT 解析ソフト

DS-0271A 信号出力を使いサインスイープにより周波数応答関数を測定する方法

固有振動周波数を測定する方法として、対象を加振機でサインスイープ加振を行い、周波数応答関数を 測定することがよくあります。また、バンドパスフィルタの周波数特性の測定でも、入力信号にサイン スイープ信号を使い、周波数応答関数を測定します。どちらの測定も操作手順は同じです。

サインスイープによる測定では、平均機能の「パワーSP スイープ」機能を使います。この時、DS-0271A 信号出力(オプション)を使うと、サインスイープが解析と同期して出力されますので、最適な測定と なり、データの平均化も可能となります。

ここでは、この DS-0271A 信号出力を使い、CR 回路のローパスフィルタ測定を例に、その操作手順を 説明します。なお、下図の様に電気回路から信号を取り出す場合、信号が DS-2000 の入力回路に影響さ れないようバッファーアンプを通した信号を接続してください。また、オシロスコープ用プローブの影 響を排除するためプローブを使わずに直接接続してください。

DS-0721A や DS-0221 入力の詳しい仕様については取扱説明書説をご覧ください。

以下説明では、ファイルメニュー操作を []で、[ファイル]→ [新規プロジェクト]のように表記します。 なお、DS-0221の基本的操作並びに操作手順での設定後の OK ボタン操作はここでは省略します。

■ 接続

加振機を使用する場合は、DS-0271Aの信号を加振コントローラの外部入力端子(EXT IN)へ接続します。

■ 操作手順

- 1. メニューから [ファイル] → [新規プロジェクト] を開きます。
- 2. 「START」ボタンを ON し、測定状態とします。
- 3. 信号に応じた電圧レンジ、周波数レンジを設定します。ここでは、電圧レンジ=1 Vrms、周波数レ ンジ=20 kHz に設定しています。
- 4. メニューから [入力] → [ウィンドウ(窓関数)設定]を選択し、"ウィンドウ(窓関数)設定" ダイアログボックスを開き、CH1 および CH2 とも窓関数を "レクタンギュラ"に設定します。

ウ	ウィントウ(窓関数)設定 🔀					
	<u>S</u> et	<u>E</u> xp <u>F</u> orce <u>U</u> ser	_			
	CH1	レクタンキ 13 -				
	CH2	レクタンキ コラ				
	CH3	ハニング・				
	CH4	ハニング・				
	CH5	ハニング				
	CH6	ハニング				
	CH7	ハニング				
	CH8	ハニング 💽 💽				
	口全升	ヤンネル設定にて詳細設定も同じにする				
	全和初	設定 UK +ャンセ	1			

- 5. 「STOP」ボタンを押し、測定を停止します。
- 6. メニューから [データ表示] → [表示レイアウト] → [表示画面数 6 画面] を選択し、6 画面表示 にし、下図の様に各画面に表示したいデータを設定します。

7. メニューから [入力] → [信号出力] を選択し、"信号出力"ダイアログを開き、「出力振幅」を設定します。この時「信号出力 ON」はチェックしません。「信号出力 ON」にチェックを入れると、設定された周波数の正弦波が出力されますので注意ください。

- 8. スイープ周波数を設定します。
 - メニューから〔入力〕→〔平均化処理設定〕を選択し、"平均化処理設定"ダイアログを開き、 「平均化モード:パワーSP スイープ」、「平均方法回数:2」、「スイープトレース CH:1」に 設定します(最終ページの補足説明を参考ください)。

平均化処理影	定 🛛 🔀	
<u>S</u> et	Sweep	
┌平均化モ		
N°7−SP	.⊼イ−フ° ▼	-
□ □ □ 平均方法		
• 回数	2	-
○ 時間	1秒	
□ 平均開約	始時にオーバーラップを0%にする	
⊼ <u>/</u> −7°トレ-	-7CH CH 1 💌	-
	0K ++>th	

② メニューから [入力] → [平均化処理設定]を選択し、"平均化処理設定"ダイアログを開き、 SWEEP タブで「信号出力連動スイープ平均:ON」にチェックを入れ、下図のように各数値を 設定します。

	<u>Set</u> Sweep 信号出力連動スイーブ平均 「 ON Start周波数 25Hz Stop周波数 20000Hz テーハ°-機能 「 <u>ON/OFF</u> 立ち上がり 1s	* * * *
	OK _ +v>tı	
この画面の言 信号振幅を ⁻ スイープしま	役定の意味は、25Hz でスイープ開始し 20000 Isかけて設定値まで上昇させ、その後設定掛 す。	Hz で終了します。 最幅値を維持して

注意

sin 出力に変更したい場合、"平均化処理設定"ダイアログの SWEEP タブで「信号出力連動 スイープ平均:ON」にチェックを入れると、先の操作手順7の「信号出力」ダイアログを開 くことができず、設定が出来ません。「信号出力連動スイープ平均:ON」のチェックを外す ことで、操作手順7の「信号出力」ダイアログを開くことが出来ます。

опо боккі

9. 「AVG」ボタンを押し、測定を開始します。この時、信号出力も開始されます。スイープが設定の 上限に達すると測定は自動で STOP します。任意に停止したい場合は「STOP」ボタンを押します。

<途中経過画面>

- 10. X 軸を Log スケールに設定します。
 - ① メニューから [データ表示] → [X 軸設定] を選択し、"単位設定"ダイアログを開き、XUnit タブで「X 軸 IN/LOG: Log」にチェックを入れます。

単位設定		×
<u>X</u> Unit <u>P</u> ha	se	
_X軸拡大		
□ 現在のデルタカーソル間にて:	×軸拡大	
スタート位置 0	· Hz	
ストッフ [°] 位置 20000	Hz	
「X輔LIN/LOG	立 -	
	_ rd	
C r/	/min	
C S		
	01/	الطري ال
▼ 全画面	UK	キャンセル

② X 軸が Log スケールで表示されます。

- 11. Y 軸スケールを任意設定します。
 - Y 軸スケールを変更したい画面をクリックし、アクティブにします。
 - ② メニューから [データ表示] → [Y 軸設定]を選択し、"単位設定"ダイアログを開き、YUnit タブで、画面下の「全画面」のチェックをはずし、「Y 軸スケール:任意設定」をチェックして、上下限値を設定します。Y 軸スケールを変更したい画面毎に① ~ ②の操作を繰り返します。

単位設定	
XUnit YUnit Phase	
データ属性 Mag 👤	
	-
で任意設定下限「40	-
スペクトル単位	
Yinter (Yinter State Sta	
© 0-Peak	
C P-P MagdB 👤	
© V © OFF	
C PSD C FSD	
□ 全画面 OK キャンセル	

12. カットオフ周波数をみるため、周波数応答関数-3dB(電圧値で 1/√2 倍に減衰した点)にカーソルをあてます。下図はその時の様子を示します。

13. 周波数分解能を上げる(ズーム機能)

カットオフ周波数付近や共振周波数付近では周波数分解能を上げて測定をしたいことがあります。 周波数分解能を上げるには、次の2つの方法があります。

- メニューから [入力] → [サンプル条件設定] を選択し、サンプル条件設定ダイアログで 大きいサンプル数(例えば、2048 点 ⇒ 4096 点など)に変更
- ズーム機能を使ったスイープ測定

どちらの方法をとっても、測定には今まで以上の時間がかかります。周波数範囲を絞って測定する などの工夫が必要です。

ここでは目標として、700 Hz を中心に±500 Hz のズーム測定を行うという例で説明します。ズーム 機能により、例えばサンプル数 2048 の場合、周波数分解能が 700 Hz ± 500 Hz を 800 等分でスイ ープされることが期待されますが、設定上の制約があります。

 ① メニューから [入力] → [周波数レンジ設定]を選択し、周波数レンジ設定ダイアログを開き、 Set タブで「ズーム解析」をチェックして、先に「周波数スパン:1 kHz(±500 Hz)」を設定し、 次に「中心周波数:700 Hz」とキーインすると、自動で「中心周波数:720 Hz」が設定されます。 これは中心周波数と周波数スパンの設定によってズーム倍率が決まり、ズーム後の周波数分解 能の制約条件があるため、キーインされた数値に近い値に自動変更され、数値が設定されるた めです。

周波数レンジ設定		
<u>S</u> et <u>Z</u> oom		
□ オーディオサンプル周波	変数モート	
周波数レンジ	20kHz	
●ス~ム解析		ן ן
中心周波数	720 . Hz	
周波数スパン	1kHz 💌	
		J
	OK	キャンセル

 ② メニューから [入力] → [平均化処理設定]を選択し、平均化処理設定ダイアログを開き、 その Sweep タブで「Start 周波数:400 Hz」、「Stop 周波数:1200 Hz」に設定します。 先の測定で700 Hz 近辺の様子が知りたいのでスイープ測定範囲を絞っています。

平均化処理設	定		
<u>S</u> et	Sweep		
-信号出力 戸 (N) Start居 Stop周) デーバー根 戸 (N/(立ち上	連動スイー 波数 400 皮数 120 縮 FF がり 1	ブ平均 0 s	··Hz ··Hz
		OK	キャンセル

③ 「AVG」ボタンを ON し、測定を開始します。

下図はズーム測定した結果です。これにより、より正確にカットオフ周波数を読むことが出来 ます。

14. 測定終了時には、メニューから [入力] → [平均化処理設定] を選択し、平均化処理設定ダイアロ グを開き、Sweep タブで「ON」のチェックをはずします。この時、Set タブで平均化モードを「パ ワーSP スイープ」から「パワーSP 加算平均」などに変更してください。「パワーSP スイープ:ON」 の場合、操作に制限が掛かるため、操作できないメニューが発生します。

平均化処理器	教定			
<u>S</u> et	Sweep			
┌平均化刊	┌平均化モード―――			
/パワーSP.スィープ				
一平均方法	<u>д</u>			
• 回数				
○ 時間	1.0 . 秒			
□ 平均開始時(こオーバーラップを0%(こする				
Z-7-7°FU-ZCH <mark>CH 1 .</mark> ▼				
	OK	キャンセル		

■ 補足説明

1. サインスイープの周波数

サインスイープの周波数は、FFTの周波数分解能に応じた周波数でスイープされます。 この例の場合 20 kHz レンジ、サンプル数 2048 ですので、

周波数分解能 $\Delta f = 20 \text{ kHz} \div (2048 \div 2.56) = 25 \text{ Hz}$

よりスイープされる周波数は 25 Hz 飛びに、25 Hz → 50 Hz → 75 Hz・・・→ 20 kHz となります。 また、サンプル数 2048 点行われるまで、その周波数は一定で維持され、さらに平均回数を 2 回と すると 2 回平均化されるまで周波数は一定に維持されます(平均化は、メニュー [入力] → [サン プル条件設定] → [オーバラップ量]の設定とも関連があります)。スイープ信号が解析と連動して いない場合、サンプル数 2048 点測定する間に周波数が変化しますが、DS-0271A 信号出力を使うと解 析に連動して同じ周波数が維持されるため、適切な測定を行うことができるメリットがあります。

2. パワーSP スイープ機能

この機能は、現在スイープされている周波数の監視を「スイープトレース CH」で設定されたチャンネルのスペクトルから、ピークの周波数をとって行っています。この周波数に該当する周波数応 答関数の値がサインスイープに応じ順次記憶され、記憶されたデータを表示する機能となっています。 一般的に「スイープトレース CH」は基準となる信号側を設定します。

平均化処理器	定	X
<u>S</u> et	Sweep	
-平均化刊	<u>∃</u> —	
パ°ワ-SP	°.⊼イ−フ° <u>▼</u>	
一平均方法	±	
● 回数	1 .0	
○ 時間	1.0	
□ □ 平均開始		5
⊼-7° ዞレ-	-7CH CH 1 🔽	
	OK ++:	7t1)

- 以上 -