Advanced Tachometer FT-7100

ονοζοκκι

100

SAMPLE

MODE

NEXT

FT-7100 Advanced Tachometer

New algorithms with FFT calculating function enables the non-contact measurement of the rotational speeds by sound or vibration from the object under measurement, which was impossible up to now.

Outline

The FT-7100 is a handheld tachometer that uses FFT calculations to perform frequency analysis and measure rotational speed. It can be used in a wide range of measurement applications, such as motor's constant and steady rotational speed and engine rotations during acceleration/deceleration etc.

Features

- Rotation measurements can be taken even by sound or vibrations no need for the modification or attachment to the rotational shaft for the measurement.
- Capable of measurement even changes in rotational speed during acceleration or deceleration.
- Effective for measuring the rotational speed of engines in completed vehicles.
- Various sensors can be used.
- Provided with an analog output function.
- Large size LCD with backlight for displaying the measured result is provided.
- Provided with an averaging function.

2

Four measurement mode algorithms can be selected to suit your measurement application

Measurement mode	Algorithm	Measurement algorithm
Constant rotation measurement (CNS)	А	Maximum peak frequency method
	В	Frequency interval method
Accelerated/decelerated rotation measurement (ACT)	D	Maximum peak frequency method
	E	Maximum peak frequency method
		Rotational speed candidate selection

* With the D and E modes, since internal processing is performed at high speeds, the algorithm tracks the accelerated and decelerated rotation.
 * With the E mode's rotational speed candidate selection function, the most suitable rotational speed can be selected from up to a maximum of eight frequency peaks.

Calculation is performed using the frequency of the power spectrum's maximum peak. Measurement is normally performed in this mode.

The frequency intervals of the order components of the rotation are sought sequentially. The largest frequency interval is judged to be the first-order component of the rotational speed. This method is used to determine the rotational speed, and is an effective method to use when the first-order peak is unstable.

Application examples

Using a microphone or an accelerometer to measure the rotational speed of an engine

The rotational speed of an engine can be measured by the sound or vibration caused by the movement of the pistons. This is an effective measurement method when the engine compartment is covered, and engine rotation sensors cannot be attached.

* Set the number of pulses to match the number of ignition firings per one crankshaft rotation.

Example:

In the case of a four-cylinder engine with four-cycle, the number of pulse is set at 2 P/R.

Measuring the rotational speed of DC motors incorporated into home appliances

This example shows how to measure the rotational speed of DC motors that are built in the home appliances. Even if the DC motor has been installed deep inside an appliance such as an electric toothbrush, the rotational speed can be obtained by the magnetic flux leaking from the motor.

* The rotational speed can be measured simply by inputting the number of poles in the DC motor rotor.

Using an engine rotation sensor to measure the rotational speed of an engine

The rotational speed of an engine can be measured by clamping a sensor to the primary low-voltage or secondary high-voltage conductor. Measurement can be performed simply by inputting the number of ignitions per rotation.

* Set the number of pulses to match the number of ignition firings per one rotation.

Example:

In the case of a 4-cycle engine

If you will be performing measurement on the primary conductor, set the number of pulses to half the number of cylinders.

If you will be performing measurement on the secondary conductor, make the setting 0.5 P/R so that there is one pulse for every two rotations.

Using an accelerometer to measure the rotational speed of a small fan

This example shows how to measure the rotational speed of rotating objects such as a small fan. The vibrations from a rotating object depend on the rotational movement of that object. The rotational speed of an object can be obtained by measuring the vibration frequency.

Using an accelerometer to measure the rotational speed of a compressor

This example shows how to measure the rotational speed of the compressors that are used in air conditioners and similar equipment. When used in combination with an accelerometer, the FT-7100 can be used to measure the rotational speed of a compressor whose rotational shaft is not directly accessible.

Using a microphone to measure the rotational speed of an engine from the muffler noise

This example shows how to measure the rotational speed of an engine from an automobile's muffler noise. Since the pulsation component of the engine rotation is included in the muffler noise, the engine's rotational speed can be obtained by this pulsation frequency component.

* Set the number of pulses to match the number of ignition firings per one crankshaft rotation. Please note, however, that depending on muffler performance, there may be cases when measurement cannot be performed.

System Configuration

FT-7100 Specifications

Measurement

Target measurement objects	DC motors, compressors, engines, general rotating objects
Calculation method	FFT calculation
Measurement time	Within 250 ms
Input frequency ranges	2000 Hz range: 30 Hz to 2000 Hz 500 Hz range: 7.5 Hz to 500 Hz 250 Hz range: 3.75 Hz to 250 Hz
Measurement unit	r/min (rotational speed)
Measurement accuracy	±2 x rotational speed resolution (r/min), ±1 count * The rotational speed accuracy depends on the frequency range.
Minimum rotational speed resolution	Frequency range (Hz) \div 6400 x 60 \div the number of pulses set (P/R)
	 * The resolution becomes coarse when the rotational speed is accelerating or decelerating. 6400 = 200 lines x 32
Filter function	Limited to the frequency range that you wish to measure (rotational speed range) from the overall range of the selected frequency range
Averaging	Moving average No. of averages: OFF, 2, 4, 8, 16
Sensor amplifier sensitivity adjustment dial	The sensor amplifier sensitivity can be adjusted by using the rotary dial located on the right side of the main unit.

Output

[REVO] Analog output	
Signal output	In proportional to the rotational speed displayed value
Voltage range	0 to 1 V/0 to F.S. (F.S. can be specified freely)
Conversion method	10-bit D/A conversion
Linearity	±1% of F.S.
Output refresh time	Within 250 ms
Temperature stability	±0.05% of F.S./°C (ZERO & SPAN)
Setting error	±0.5% of F.S. (adjustment setting error at the time of shipment from the factory, ZERO & SPAN)
Load resistance	At least 100 kΩ
Output connector	Ultra-mini jack (φ2.5)
[SIG] Analog output for the monitor	
Signal output	Analog output for the monitor after waveform shaping of the sensor signal
Load resistance	At least 100 kΩ
Output connector	Ultra-mini jack (φ2.5, same which is also used as REVO output.)

Detection

Compatible sensors	5	OM-1200, VP-1220, VP-202, IP-292, IP-296, IP-3000A, IP-3100
		NP-3000 Series (with built-in preamplifier), MI-1431 +MI-3110 (microphone), magnetic flux leakage sensor
Voltage leve	els	5 V: Max ±5 V 0.5 V: Max ±0.5 V 0.05 V: Max ±0.05 V
Input coupl	ing	AC coupling
Power supply for the NP sensor		Rated current power supply ±2.4 (0.5 mA)

Note: Measurement precautions: Depending on the type of engine or object under measurement, there may be cases when correct detection cannot be performed.

Display

Number of display digits	5 digits
Character height	10.2 mm
Display device	7-segment LCD, backlight
Display update time	0.5 ±0.2 s
Display resolution	1 r/min

Measurement modes

CNS (Constant)	Use this mode when there are minimal fluctuations in the rotational speed of the object under measurement (when measuring the rated speed or similar)
ACT (Active)	Use this mode when the rotational speed of the object under measurement accelerates or decelerates (please note, however, that measurement may not be performed correctly in the case of sudden changes)

General specifications

Power source	Four AAA alkaline batteries or dedicated AC adapter (PB-7080, sold separately)
Continuous measurement time	Approx. 7 hours (when the backlight is off) Approx. 6 hours (when the backlight is on) (When alkaline batteries are used at a temperature of 20°C; excluding the use of an NP series accelerometer* ¹)
	*1: When an NP series accelerometer is used, current consumption increases because of the constant current power supply used to drive the NP series accelerometer. Use of the dedicated adapter is therefore recommended.
Battery LOW display	The "LOW" mark flashes when the voltage has dropped to approx. 4.2 V
Operating temperature range	0 to +40°C
Storage temperature range	-10 to +50°C
Operating humidity range	35 to 85% RH (non-condensing)
Storage humidity range	35 to 85% RH (non-condensing)
Weight	Approx. 230 g (main unit only, batteries not included)
Outer dimensions	189.5 (L) mm x 66.0 (W) mm x 47.5 (D) mm (main unit only)
Standard accessories	AAA alkaline batteries: 4 pieces Instruction manual, three types: 1 copy of each Carrying case: 1 piece

ΟΝΟ ΣΟΚΚΙ

U.S.A & CANADA

Ono Sokki Technology Inc. 2171 Executive Drive, Suite 400 Addison, IL. 60101 U.S.A Phone : 630-627-9700 : 630-627-0004 Fax E-mail : info@onosokki.net http://www.onosokki.net

THAILAND

Ono Sokki (Thailand) Co., Ltd. 29/67 Moo 5 Tivanon Road, Pakkred, Nonthaburi 11120, Thailand Phone : 02-964-3884 : 02-964-3887 Fax E-mail : osth_sales@onosokki.co.jp

P.R.CHINA

Ono Sokki Beijing Office Beijing Jing Guang Center 3510 Hu Jia Lou, Chao Yang Qu Beijing 100020, P.R.China Phone : 010-6597-3113 : 010-6597-3114 Fax E-mail : onosokki@public.bta.net.cn

WORLDWIDE

URL: http://www.onosokki.co.jp/English/english.htm

* Outer appearance and specifications are subject to change without prior notice.

Ono Sokki Co., Ltd. 1-16-1 Hakusan, Midori-ku, Yokohama 226-8507, Japan Phone : 045-935-3976 Fax : 045-930-1906 E-mail : overseas@onosokki.co.jp

CAT. NO. 971-01 Printed in Japan 081 (SK) 3K