

DS-3000 Series Data Station

Operation Manual

for Frequency Response Function

ONO SOKKI CO., LTD.

Contents

- 1. Flowchart in Preparation for Measurement
- 2. Connecting the Devices
- 3. Setting Up the DS-3000
- 4. Starting Measurement

1. Flowchart in Preparation for Measurement

This section describes the procedure for measuring the frequency response function using an impulse hammer.

2. Connecting Devices

Connect the accelerometer and impulse hammer to the DS-3000. There are two types of accelerometer: built-in preamplifier type and charge output type. The explanation here assumes that a built-in preamplifier type is used.

Connect each sensor to the DS-3000 series instrument basically as shown below.

The following figure shows an example of direct connection of the impulse hammer to the DS-3000 data station without an amplifier. If the data station is connected to the amplifier and it amplifies output (gain), input the output from the amplifier built in the impulse hammer to the DS-3000.

3. Setting Up the DS-3000

3-1 Preparing for Setting

To enable the connected impulse hammer and accelerometer to normal work and display data, set the operating conditions and sensitivity of the detector in the FFT analyzer. The sensitivity and operating conditions to be set are described in the "**Calibration Chart**" attached to the accelerometer.

Calibration Chart attached to built-in preamplifier type accelerometer NP-3110

In the Calibration Chart, the data shown in (1) above should be set in the FFT analyzer.

(1) Voltage sensitivity: Describes what voltage the detector outputs at acceleration of 1 m/s². This example shows that a voltage of **0.492 mV** is output.

In the document attached to the impulse hammer GK-3100, necessary data is described as shown below.

This indicates that the voltage output per 1 N (newton) varies depending on whether an extender is attached to the rear of the impulse hammer.

To maintain a constant excitation force, it is necessary to blow the hammer using the weight of the hammer itself rather than the power of the arm or hand. This is why the use of the hammer with an extender attached to the rear is recommended.

Here, confirm an voltage output of **2.38 mV/N**.

The frequency of the excitation force by the impulse hammer can be roughly adjusted by changing the material of the tip of the hammer.

■ HARD TIP (metal)

The rise of the impulse is steep to enable excitation up to high frequency. However, double hammering could occur, and power spectrum density is small.

■ SOFT TIP (PVC)

The power spectrum density is large and excitation energy is concentrated in the low frequency. However, excitation of several Hz or less is difficult.

MEDIUM TIP (plastics)
This tip has intermediate characteristics between the metal tip and PVC tip.

3-2 Setting the Input Source

Set the sensitivity and operation conditions of the detector connected to the DS-3000. This section is described assuming the following connection:

1CH: Impulse hammer 2CH: Accelerometer

Click Input on the menu bar and select the Set Voltage Range from the dialog box that has appeared.

- (1) If the "Auto Range" check boxes of both channels have been checked, uncheck them.
- (2) For "Coupling", select AC (AC coupling) for both channels.
- (3) Open the "Input Condition Setting" dialog box.
 1CH: When inputting the signal from the power box for the impulse hammer, set CCLD to OFF. For direct input from the impulse hammer, set CCLD to ON.
 2CH: When inputting the signal directly from the preamplifier built-in type accelerometer, set CCLD to ON. When inputting the signal from the charge output type accelerometer via a connector connection type charger converter, set CCLD to ON. When inputting the signal via the charger amplifier, set CCLD to OFF.
- (4) Confirm by clicking **OK**.

3-3 Converting to Unit

The vibration waveform is still displayed in voltage and hard to handle. Use the unit calibration function to convert voltage to acceleration so the values can be read directly.

Click Input on the menu bar and select Unit/Cal Setting to open a dialog box.

Input/Output Setting() Analysis(A) Data Dis System Setting().	Cal Sett	i ng Valih	FII/SP						×
Cross Combination Setting(D) Freq Range Setting(P) Ctrl+F Input Setting(P) Ctrl+I Sampling Condition Setting(A) Rotation Input Setting(B)	CH1 CH2 CH3 CH4	EU	Unit Name N • m/s2 • V •	Ell Value 0.00238 0.000492 1	EU Type V/EU V V/EU V V/EU V	0 dB Reference Value 1 👻 1 👻 1 👻 1 👻	Offset OdB	Get TEDS Info EXEC EXEC EXEC EXEC	
Unit/Cal Setting (\U) Window Function Setting (\U) Time-axis Preprocessing Setting (P) Averaging Setting (\U) Schedule Setting (H)					,				
Sig Output Setting (U)							C	Set to All Ch	

Input of hammer excitation unit N (newton)

Click OK to complete the setting.

This converts voltage into excitation force N (newton) for 1CH (impulse hammer) and into m/s^2 , the unit of acceleration, for 2CH (accelerometer). The data can now be read directly in each unit.

3-4 Display Switching

Screen setting

Make settings so that in data measurement mode the time waveform of 1CH is displayed in the upper frame and the time waveform of 2CH in the lower frame.

Window setting

Select the channel and function from the window setting dropdown list.

To change the window, click the data type label at the upper left of the data window to activate the frame and then make the above setting. Display the time waveforms of 1CH and 2CH.

3-5 Adjusting the Voltage Ranges

Set the voltage and frequency ranges to the values appropriate for measurement.

While hitting the impulse hammer <u>feeling like dropping it under its own weight</u> (constant force) against the test object, set the range to display the signal waveform as large as possible to the extent that the **LEVEL indicator** LED of each channel does not turn on.

Input range setting:

While hammering, set the range so it does not go over the limit.

I	Input Condition Setting 🛛 🛛 🔀							
		Auto Range	Voltage Range	Coupling	CCLD	Auto Zero	Analog Filter	
	🔲 СН1		10 m Vrm s 💌	AC 🔽		~	Z(FLAT)	~
	CH2		10 m Vrms	AC 🔽		~	Z(FLAT)	~
	🔲 СНЗ		100 m.Vrm.s	AC 🔽		 Image: A set of the set of the	Z(FLAT)	*
	🔲 CH4		0.316Vrms 1Vrms	AC 🔽		~	Z(FLAT)	~
			3.16Vrms 10Vrms					
	Vrms 🔽 Auto Range When Range Over Set to All CHs							
						ОК	Cancel	

LEVEL indicator LED: Lit in red when the limit is exceeded.

3-6 Applying a Trigger

To make it easy to observe the waveform, use the trigger function to stop the waveform at the appropriate position in the window.

In the configuration window, select "Input/Output Setting" > "Trigger Condition Setting" > "Internal Trigger", and click the "Open" button.

While hammering, apply a trigger to the waveform of 1CH (impulse hammer).

Set the trigger position as close to the **left side** as possible **in the window** to not interfere waveform observation.

Select Internal Trigger. Use the hammer input signal to apply a trigger.

Click the mouse button in the window to set the trigger level and position. Set the trigger as close to the left end as possible in the window.

Leave the Y-axis scale to the default. If the scale is changed, the scale and level (%) axis will not match.

Click OK to complete the setting.

ονο ζοκκι

🗧 Onosokki DS-3000(DS-0320) - [Window 1]	
File(E) Measurement Control(Q) Edit(E) Input/Output Setting(Q) Analysis (A) Data Disp Setting(Q) Mode(M) View(V) Window(W) Options(Q) Help(H)	8 ×
FFT AVG START PAUSE STOP REC TRIG SCHED SLOPE SIG OUT	8000
Frequency Range 20kHz 🕑 Sampling Condition Internal 💟 Averaging Mode Power Sum 💟 Averaging Count 10 🔲 Trigger Mode Repeat 🗹 Sampling Point Count 2048 😪 Averaging Condition Count 💟 Averaging Time 10	
E Current Current-3D Schedule-3D CH 1 V Time V Real V	
100 CH1: Time Real	ustom
80	
60	Suston
	12
-90	
s X: 644531us Y: 55.723N	
CH2: Time Real	
400	
0 0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.04	
s X: 1.035m/s Y: 44.357 <i>m/s</i> 2	
Peak V 2 Q Log V X-axis Zoom Lin V 2 0003 V A V	

Click the TRIG button in the window to be ready to trigger.

Upper partition: Impulse hammer waveform Lower partition: Accelerometer waveform

Hammer the test object. If the waveform stops at the specified position, triggering is successful.

3-7 Window Setting

As the signal of the impulse hammer is a sporadic impact signal, switch over to the **rectangular window** without correction.

In the configuration window, select "Input/Output Setting" > "Window Function Setting", and click the "Open" button to open the window function setting window. Set the window function for each channel. In this example, Rectangular is selected for each channel.

Configuration			4 ×			-
		Ð				
▶ File						
Meas Control						
▶ Edit						
∽ Input/Output Setting						
System Setting	Open					
Cross Combination Setting	Open					
Freq Range Setting	20kHz					
Input Setting	Open					
Sampling Condition Setting	Internal					
Rotation Input Setting						
Trigger Condition Setting	Repeat					
Unit/Cal Setting	Open	-				
Window Function Setting	Open					
Time-axis Preprocessing Setting	Open					
Averaging Setting	Power Sum	Window P.	tion Setting		\mathbf{X}	
Schedule Setting	Open					
Sig Output Setting	Open	CH Setting	Engeneratial Force	User		
Analysis Setting					1	Set Rectangular for every channe
Data Disp Setting		СН	Window Function	Parameters		
Mode		CH1	Rectangular	*		
▶ View		CH2	Rectangular 🕚	1		
▶ Window		CH3	Hanning N	1		
Option		CH4	Hanning	/		
Help		•			-	
		Set to	All 📃 🔲 Same for all			
				Canci	91	
						4

опо боккі

3-8 Deciding the Frequency Ranges

Decide the frequency range based on the following factors.

- O Within the analysis frequency range of the sensor (accelerometer)
- O Focused frequency resolution (The lower the frequency range, the finer the frequency resolution.)
- O How many resonant frequencies need to be observed? (The higher the frequency range is, the more modes can be observed.)

Configuration	₽ X
	⊞ -
▶ File	
▶ Meas Control	
▶ Edit	
∽ Input/Output Setting	
System Setting	Open
Cross Combination Setting	Open
✓ Freq Range Setting	20kHz
Audio Sample Mode ON	20kHz
► Voom Setting	8kHz
Input Setting	5kHz
Sampling Condition Setting	2.5kHz
Rotation Input Setting	2kHz
Trigger Condition Setting	1kHz
Unit/Cal Setting	800Hz
Window Function Setting	400Hz
Time-axis Preprocessing Setting	320Hz
Averaging Setting	200Hz
Schedule Setting	160Hz
Sig Output Setting	Open
Analysis Setting	
Data Disp Setting	
▶ Mode	
▶ View	
Window	
▶ Option	
🕨 Help	

Select the frequency range with the mouse.

3-9 Setting A/D Over Cancel

This is a function which, if hammering is so strong that the input signal voltage goes over the limit, automatically excludes from data. In the configuration window, select "Input/Output Setting" > "Sampling Condition Setting".

First, confirm data with A/D Over Cancel set to OFF. If the voltage goes over with the function set to ON, data is no longer updated, thus making it hard to do adjustment.

Set A/D Over Cancel to ON after confirming that the trigger activates correctly.

Configuration	q	×	1
	Ŧ	8-	
▶ File			
Meas Control			
▶ Edit			
∽ Input/Output Setting			
System Setting	Open		
Cross Combination Setting	Open		
Freq Range Setting	20kHz		
Input Setting	Open		
∽ Sampling Condition Setting	Internal		Check A/D Over Cancel
Sampling Point Count	2048		Oneck A/D Over Gancel
Overlap Amount	Max	_	
User-Set Overlap Amount	0%		
A/D Over Cancel			
CH-to-CH Delay			
Rotation Input Setting		_	
Trigger Condition Setting	Repeat	_	
Unit/Cal Setting	Open	_	
Window Function Setting	Open		
Time-axis Preprocessing Setting	Open		
Averaging Setting	Power Sum	_	
Schedule Setting	Open	_	
Sig Output Setting	Open		
Analysis Setting		_	
Data Disp Setting		_	
Mode			
▶ View			
Window			
Option			
▶ Help			

3-10 Setting the Number of Times of Averaging

Data needs to be averaged to minimize the measurement error. Spectrum averaging is used for this purpose. (This is selected by default. If it has been changed, however, select it.)

The number of times of averaging is normally 4 or 8.

In the configuration window, select "Input/Output Setting" > "Averaging Setting".

Configuration	д Х	
	⊕ ⊡-	
▶ File		-
▶ Meas Control		
▶ Edit		
∽ Input/Output Setting		
System Setting	Open	
Cross Combination Setting	Open	
Freq Range Setting	20kHz	
Input Setting	Open	
Sampling Condition Setting	Internal	
Rotation Input Setting		
Trigger Condition Setting	Repeat	
Unit/Cal Setting	Open	
Window Function Setting	Open	
Time-axis Preprocessing Setting	Open	
🧧 🗢 Averaging Setting	Power Sum 💌	Select "Power Sum".
Averaging Partway Value	0/8	
Averaging Condition	Count	
Averaging Count	8	Enter 8.
Averaging Time	10s	
Exponential Averaging Weight	10	
Undo Averaging		
Start Time Overlap 0%		
Sweep Synchronized with Sig Ou		
Sweep CH	CH1	
Schedule Setting	Open	
Sig Output Setting	Open	
Analysis Setting		_
Data Disp Setting		_
Mode		-
▶ View		-
Window		-
▶ Option		-
▶ Help		

опо боккі

4. Starting Measurement

4-1 Executing Averaging and Starting Measurement

Execute averaging and start measurement.

Click the START button. The signal is input and averaging begins automatically. Start hammering. After the signal (hammering) is input by the preset number of times of averaging, averaging stops automatically. Execute measurement while checking the waveform for **double hammering** on the monitor screen displaying two partitions of time waveforms from the impulse hammer and accelerometer.

Number of trigger times

4-2 Checking the Frequency Response Function Data Observed

Here, check data while displaying the **frequency response function** in the upper partition and the **coherence function** in the lower partition.

* The coherence function represents the correlation of the input and output signals. Coherence is bad when there is a non-linear element such as noise mixture or backlash between input and output. When coherence is high, the reliability of the frequency response function can be said to be high. The level of coherence is displayed in the Y-axis range from 0 to 1. (The coherence function must be averaged before calculation.)

Notes:

- 1. The copyright of this procedure manual is owned by ONO SOKKI CO., LTD.
- 2. Reproduction without permission is prohibited.
- 3. This operation manual describes the procedure for general measurement and the publisher has no responsibility for data obtained by the customer during operation.