

DS-0221 General-purpose FFT Analysis Software

Simple unit calibration method of the MI-1233 Microphone and MI-3110 Preamplifier

ONO SOKKI CO., LTD.

ΟΝΟ Ο ΚΚΙ

DS-0221 General-purpose FFT Analysis Software

Simple unit calibration method of the MI-1233 Microphone and MI-3110 Preamplifier

This manual describes the simple calibration method of the sound pressure level (dBspl) using the MI-1233 microphone and MI-3111 preamplifier.

To unit calibrate the sound pressure level with the combination of MI-1233 microphone and MI-3111 preamplifier, calculate the unit calibration value per 1V from the sensitivity value of the inspection table of MI-1233 and the insertion loss value of the inspection table of the MI-3110. For accurate unit calibration, recommended you to use the SC-3100 Sound Calibrator (Reference sound pressure level 124 dBspl 250Hz),

SC-3100 Sound Calibrator

MI-1233 Microphone + MI-3110 Preamplifier

DS-2100 series Data Station + DS-0221 General-purpose FFT Analysis Software

Inspection Table

Item	Data sheet	Description
MI-1233 Microphone sensitivity	-29.54dB re 1 V/Pa	Taking 1Pa as 1V as a reference, -29.54 dB (=0.0333V) at 1Pa
MI-3110 Insertion loss	-3.02dB	-3.02 dB output (0.706V) at 1V (=0 dB) input
Total sensitivity	-32.56dB re 1V/Pa	Combination sensitivity of MI-1233 and MI-3110: -32.56 dB

(Note):

Since the value of the data sheet of the microphone and preamplifier are changed individually, please check the inspection for the inspection sheet.

The total sensitivity of the MI-1233 and MI-3110 is a sum of each sensitivity (-32.56 (dB/Pa) and the microphone sensitivity = -32.56 dBV/Pa.

The sound pressure level 94 dB is an effective value (rms). Also, the total sensitivity describes [The voltage of the microphone at the sound pressure level of 94 dB is -32.56 dBVr.] from the sound pressure 1 Pa (rms) =94 dB (rms).

When setting the correction coefficient as K;

$$-32.56 dBV_r + 20 Log \frac{K}{1V_r} = 94 dB$$
$$20 Log \frac{K}{1V_r} = 94 + 32.56 = 126.56 dB$$
$$K = 10^{\frac{126.56}{20}} = 2128139 (EU/V)$$

From the next operation, set the unit calibration as [2128000 EU/V], the display is changed to sound pressure level (dBspl) unit. Also, the Y-axis spectrum is initial setting (effective value Log display).

Operation method

From the file menu, select [input] > [Unit calibration] in this order and set each value of CH1 on the [set] tab of the [Unit, Calibration] window as follows. When the setting is completed, click the [OK] button at the right bottom. When input the [2128139] to the item of the physical quantity, the display is changed to the exponential display of [2.128E+006].

Calibration	Check
Unit name	spl
Physical quantity	2.128E+006
Calibration value setting	EU/V(Not V/EU)
Offset	0dB

			Name	Facto	. C	I Value		Offeet)	
CH1	ন	ON	spl	2.12	8E+006	EUN	٣	OdB	*	1
CH2	M	ON	V	1		EU/V	*	OdB	-	
CH3	Г	ON	v	1		EU/V	~	0dB	-	
CH4	П	ON	V	1		EU/V	¥	OdB	÷	
CH 5	Г	ON	٧	1			¥		¥	
CH 6	Г	ON	٧	1			٣		٣	
CH 7	Г	ON	V	1			-		-	
CH 8	Г	ON	V			í –	~		*	w1

The following figure shows the power spectrum of CH1 and the time waveform of CH2 when the same sine signal wave is input to CH1 and CH2.

- END -