ONO SOKKI

CF-3000 ポータブル FFT アナライザ

簡易操作手順書

トリガー機能・カーソル機能・データ長設定 とアクティブ画面の説明

株式会社 小野測器

CF3000シリーズ

トリガー機能・カーソル機能・データ長設定とアクティブ画面の説明

トリガー機能とカーソル機能の使用例として、電源 on から正弦波信号が安定するまでの時間をデルタカーソルで読み取る方法を例に説明します。

また、「アクティブ画面」の意味をご理解頂くと操作の流れがわかりやすくなります。

図1 フレーム1(上画面)は電源電圧、フレーム2(下画面)は正弦波信号波形です。

<図1> 測定データとアクティブ画面

アクティブ画面とは、表示条件を変更するとこのデータに反映される画面を指し、青字で 示されます。

アクティブ画面を変更するには、例えば上画面「ch3 time」の文字をマウスでクリックする とアクティブ画面が ch3 time 側へ移動します。

操作手順

(1) ch1、ch2のデータを2画面に表示します。

M 4 「表示」 「表示レイアウト」をクリックすると図 2 が表示されます。 このページの次の次項を設定しO K ボタンで確定します。

- ・表示画面数:Dual
- ・アクティブ画面:画面2

表示画面の上より 画面1、2となり、アクティブ画面が画面2になります。

計測ウィンドウ設定	
Set	< 🕺 2 >
表示画面数 Dual	画面数とアクティブ画面
7/1717"画面 画面 2	
ロ オーバーレイ表示	
□ 4画面表示のとき、縦に並べる	
OK キャンセル	

(2)アクティブ画面が下画面です。

M4「表示」 「データ入力源」をクリックすると図3のペーが開きます。

データ入力源設定 CH 2: Time	×	】 <図3> 表示データの選択
Ime Ime Fourier Spectrum E Power Spectrum E Octave Ia Frq. Response Re Histogram Auto Corr. Cross Corr. Imp. Response Coherence COP Hilbert Imp. Real Imp.	rent ile ible cord MastorChannol CH 1 - OK +720/	

図3のTime、ch2を選択しOKボタンで確定します。

画面1(上画面)をアクティブ画面にし、同様の操作で、Time、ch1を選択しOKボタンで確定します。

(3)電圧レンジの設定

M2「入力」 「電圧レンジ」 クリックすると図4が開きます。

ch1, ch2を次のように設定します。

- ・オートレンジ: off (ノーチェック)
- ・電圧レンジ:適当な電圧レンジを設定
- ・カップリング: ch1 は DC (電源 on 信号)

ch2 は AC (正弦波信号)

・入力源: ch1、 ch2 とも BNC (電圧入力)

電圧レンジ設定	2					×	< 🕅 4 >
Set <u>1</u>	Set <u>2</u>	<u>F</u> ilter					
	オートレンジ	電圧レンジ"	カップリング	入力	源		電圧レンジの設定
CH1	□ ON	3.16Vrms	- DC	- BNC			
CH2	□ ON	10Vrms	AC	- BNC		•	
CH3	□ ON	3.16Vrms	- DC	- BNC		•	
⊖ CH4	□ ON	1Vrms	- AC	- BNC		• •	
全升フネル語	安定 Vrms	-			OK	キャンセル	

(4)トリガーモード、トリガーレベル、トリガーポジションの設定

M2「入力」 「トリガー設定」をクリックすると図5のページが表示されます。 設定項目を次のように設定します。

- ・トリガーモード:シングル(測定1回毎にSTOP します)
- ・入力源:内部、ch1
- ・レベル:10%

(ch1の信号が電圧レンジの10%以上になるとデータ取り込み開始します)

- ・ポジション:測定開始点(図5では矢印部分)
- ・スロープ:+(波形の立ち上がり点)

設定後 OKボタンを押し確定します。

<図 5 > トリガーの設定

トリガーモードを 「リピート」を選択す るとトリガーがかかる 毎に測定します。 「ワンショット」では 最初1回トリガーが掛 かると、その後はトリ ガー機能が解除され繰 り返し測定になります。

(5)サンプル条件の設定

画面に表示される Time データ長を大きくします。

M2「入力」 「サンプリング設定」 をクリックすると図6のページが開きます。

・サンプル点数を 2048 4096 に設定しOKボタンを押して確定します。 その他の項は初期値のままとします。(「オーバラップ量」設定項目はトリガー機能 on では無視されます)

サンプル条件	X
<u>S</u> et	<u>Ext</u> <u>Cycle</u>
「サンプル点	数(<u>S</u>)
C 64	© 128 ○ <u>256</u> ○ 512
O 1024	4 • 2048 • 4096
「クロック入げ	カ源(<u>I</u>) オーパ ^ッ ーラップ・量(<u>O</u>)
◎内語	B MAX -
○ 外部	部 任意設定值 0 %
□ A/Dオ· □ CH間	-ハ [*] -キャンセル ディレイ ⁰

<図6> データ長の設定 (6)測定開始

・周波数レンジ 500Hz(測定時間 3.2s/4096 点)
周波数レンジF、サンプリング周波数f、サンプル点数n、表示時間T、
時間分解能 t、周波数分解能 fの関係式は

$$f = 2.56F$$
$$T = \frac{n}{f} = \frac{4096}{2.56 \times 500} = 3.2 s$$
$$\Delta t = \frac{1}{f}$$
$$\Delta f = \frac{1}{T}$$

周波数レンジを大きくすると測定時間 T は小さくなりますが、時間分解能が上が りますが(サンプリングが細かくされる)。適した周波数レンジを設定して下さい。 ・TRIG ボタンを on 後、START ボタン on にします。

・測定機器の電源を on します。

電源電圧によりトリガが掛かると TRIG'D ランプが点灯し、データサンプルを開始します。4096 点サンプル後、測定後画面にデータが表示されます。図7参照

< 図 7 > 測定画面

波形が上手く取り込めない場合は

- ・TRIG ボタンを解除し、(波形が繰り返し表示される状態で)信号を繰り返し入力し ながら、電圧レンジを最適に設定し直し、(4)項トリガーレベルの値を見直して 下さい
- (7)カーソルの設定

2点間のX軸、Y軸の差を表示させる設定をします。

- M4「表示」 「カーソル設定」 をクリックすると図8が表示されます。
 - ・サーチモード: Delta
 - ・データ画面をクリックし、ch1のデータの立ち上がり点にマウスを合わせ左クリックするとカーソル線がそこへ移動表示されます。
 - ・カーソル:SETボタンを押します。

SET を押した時点のカーソル位置が基点として確定されます。

・マウスを終点にしたい位置に合わせ左クリックすると、終点カーソルが表示されま

す。

・基点と終点間の時間差がデータ下部 dX:1.631s として表示されます。 (図7参照)

1)-ツル設定 🛛 🔀	<図8>
	Cursor Crs.Format	カーソル設定
	サ-∓E-K Delta	
	л-Ул 🗸 Set	
	サーチ機能	
	■ エンバンス機能	
	ビーク機能	
	時間軸L°-ク PEAK 👤	
	■ 2つの値を表示	
	〒 ルタ機能	
	X軸デレレ9機能 二点間の差	
	Y軸デル9機能 二点間の差 👤	

基点、終点位置を変えたい場合は、上記と同様な操作を繰り返します。

以上